上海品茶

您的当前位置:上海品茶 > 报告分类 > PDF报告下载

清华大学:AEC PEMFC电解水制氢现状与挑战(2022)(36页).pdf

编号:145111 PDF   PPTX  36页 11.71MB 下载积分:VIP专享
下载报告请您先登录!

清华大学:AEC PEMFC电解水制氢现状与挑战(2022)(36页).pdf

1、AEC/PEMEC电解水制氢现状与挑战The Current Picture and Challenges of AEC/PEMEC Hydrogen Production by Water Electrolysis杨福源Yang Fuyuan清华大学(车辆与运载学院)School of Vehicle and Mobility,Tsinghua University2022.3.18内容Content1.碳中和目标下的氢能角色与挑战Hydrogens Role and Challenges in Achieving Carbon Neutrality2.碱液/PEM制氢的关键技术及现状Key

2、 Technologies and Current Situation of Hydrogen Production by Alkaline Water Electrolysis/PEM Electrolysis 3.我们的工作Work at Our School2碳中和目标下的氢能角色与挑战Hydrogens Role and Challenges in Achieving Carbon Neutrality13我国温室气体排放现状 Chinas GHG Emission CO2CO2GHG emission(100mtCO2-eq)ConstructionTransportationInd

3、ustrial process Industry Carbon sinkNon-CO2greenhouse gas Non-CO2 greenhouse gasEnergy activitiesNon-electric energy activitiesSteelCementChemical industryNon-ferrous metalsOthersNet emissionGross emissionElectricity可再生能源物质循环Material cycle 热机循环Engine cycle零碳能源体系主要特征:两个支柱、两个循环、一个转换Zero-carbon Energy

4、System:2 Pillars,2 Cycles and 1 Conversion 5电Electricity氢Hydrogen氮循环NH3碳循环CH3OH氢电互转ConversionRenewable energyCarbon cycleNitrogen cycle两个支柱 2 Pillars储电和储氢Electricity storage&Hydrogen storage两个循环 2 Cycles氮循环:氨载体,热机循环Nitrogen cycle:ammonia carrier,engine cycle碳循环:甲醇/芳烃载体,物质循环Carbon cycle:methanol/arom

5、atic hydrocarbon carrier,material cycle一个转换 1 conversion氢电互转Hydrogen-electricity conversion氢-电关系Hydrogen-electricity relationship6电氢HydrogenNitrogen cycle氮循环NH3Carbon cycle碳循环CH3OH氢电互转可再生能源1.绿氢依附于绿电Green hydrogen relies on green electricity2.绿电越多,并不意味着绿氢会越多,取决于:More green electricity doesnt mean mor

6、e green hydrogen.It depends on whether:绿氢能否解决绿电存储问题Green hydrogen fixes the problems in green electricity storage 灰氢是否需要替代Gray hydrogen needs replacement生物质Biomass未来只有突破了大规模高效生物质制氢和光解水直接制氢,绿氢才可能独立于绿电Only when large-scale hydrogen productions from biomass and by photocatalytic water splitting become

7、possible,can green hydrogen be independent of green electricity.电力储能方式 Means of Electric Energy Storage 7绿电存储,最主要的两个方式是电池储能和氢储能Two main methods of storing green electricity:Battery energy storage&hydrogen-based energy storage 电池储能Battery energy storage氢储能Hydrogen-based energy storage氢能产业链各环节技术选项Link

8、s of Hydrogen Energy Industry Chain8可再生能源Renewables电网Grid制氢Hydrogen production转换Conversion储存Storage运输Transmission转储Preservation应用Application光伏Photovoltaic power风电Wind power水电Hydropower并网Grid-connect直连/离网Direct-connect/off-grid微网/储能Microgrid/power storage碱液Alkali solutionPEMECSOECAEM无膜电解Membrane-free

9、 electrolysis光解Photolysis高压气氢High-pressure gaseous hydrogen 深冷高压气氢Deep cold high-pressure gaseous hydrogen液氢Liquid hydrogen液氨Liquid ammoniaLOHCHCOOH20/30MPa长管Long pipe50/90MPa站内储罐Instationvessel35/70MPa车载氢瓶In-vehicle hydrogen bottle20MPa盐井储氢 Saline3MPa大型球罐Spherical tank液氢槽车liquid hydrogen transport

10、vehicle液氨容器Liquid ammonia container箱式货车Wagon truckLOHC容器LOHC container液氢槽车Liquid hydrogen transport vehicle管束车Pipe trailer 管道Pipeline常规物流Ordinary logistics液氨槽车/船Liquid ammonia tank truck/shipDCACACACDCDC氢储能:电力Hydrogen energy storage:electricity氢原料:化工Hydrogen raw materials:chemical industry氢动力:交通Hydr

11、ogen energy:transporation煤化工Coal chemical industry氢冶金Hydrogen metallurgyFC发电氢发电Hydrogen energy generation氨发电Ammonia energy generationFCV燃氨船Ammonia-fuledship燃氢/氨车Hydrogen/ammonia-fuled vehicle气氢增压Pressurization of gaseous hydrogen脱附Desorption液氢气化Gasification of liquid hydrogenMgH2物理吸附physical absorpt

12、ion挑战:储运环节的高成本和不确定性成为巨大瓶颈和障碍,在氢动力场景中尤为突出Challenge:high costs in storage&transmission and uncertainties,which are especially pressing in hydrogen energy scenario中期主攻方向Mid-term direction远期关注方向Long-term direction制氢和氢安全为切入点Hydrogen production&safety as the entry point碱液/PEM制氢的关键技术及现状Key Technologies and

13、 Current Situation of Hydrogen Production by Alkaline Water Electrolysis/PEM Electrolysis 29AEC、PEMEC、SOEC电解水制氢10成熟廉价;Mature&cheapMature&cheap但电流密度低,纯度不高,输出压力不高;Low current density,purity and delivery pressure高电流密度,高纯度,响应快,且可高压输出;High current density,purity and High current density,purity and delive

14、ry pressure,and quick responsedelivery pressure,and quick response但成本高,寿命短;Expensive and short-lived高效率;对燃料类型和纯度不敏感;可双向运行;Efficient,insensitiveEfficient,insensitiveto fuel types and purity and capable to fuel types and purity and capable of 2of 2-way operationway operation但可靠性低,成本高,寿命短;Less reliable

15、,expensive and short-lived AECPEMECSOEC三种典型电解制氢方式的技术指标Technical Indicators of 3 ways of Hydrogen Production by Electrolysis 指标(Indicators)碱性电解(AEC)质子交换膜电解(PEMEC)固体氧化物电解(SOEC)性能参数(Performanceparameters)电解池能耗(Energy consumption of electrolytic cell)(kWh/Nm)4.2-4.84.4-5.03系统能耗(System energy consumption

16、)(kWh/Nm)5.0-5.95.2-5.93.7-3.9电解池效率(Electrolytic cell efficiency)(LHV,%)63-7160-68100系统效率(System efficiency)(LHV,%)51-6046-6076-81负荷弹性(Load elasticity)(Nominal load%)(额定负载%)20-1000-1200-100冷启动时间(Cold start time)1-2h5-10minHours热启动时间(Start time)1-5min16000典型商业化规格(Commercialized scale)5MW1MW约10kW氢安全约束

17、Hydrogen safety constraintAnodeCathodeH21/2O2ElectrolyteElectrolyte222222212222221:2Anode:OHH O+O+eCathode:H O+eOH+HTotal H OH+O机理反应Reaction mechanism 阳极趋向于碱性减弱Anode sees lowering alkalinity阴极趋向于碱性增强Cathode sees rising alkalinity!OH-低阻抗单向穿过隔膜OH-passes through the separator without return with low im

18、pedance现象 Phenomenon强烈不均衡Strong imbalance OH-浓度在阴阳极的差异Different concentration of OH-in anode and cathode 产热-活性内部负反馈反应机制Heat-production-activity internal negative feedback reaction mechanism离子传导问题Ionic conduction高OH-离子穿透性、低H2分子穿透性、耐强碱环境隔膜High OH-ion penetrability,low H2molecule penetrability,alkali-r

19、esistant diaphragm电解效率问题Electrolytic efficiency低电解电压、耐强碱环境、大电流密度、非贵催化剂 Low electrolytic voltage,alkali-resistant environment,high current density,non-precious metal catalyst氢气出口变压及起停等动态工况Dynamic conditions like variable pressure and start-stop.系统控制问题System control传热传质、纯化、安全一体化附件系统及控制系统heat/mass tran

20、sfer,purification,safe integrated accessory and control system强烈不均衡Strong imbalance机理/现象Mechanism/Phenomenon科学问题Problems关键技术Key technologies电解水制氢关键科学技术问题 AECKey Problems of AEC电解水制氢关键科学技术问题-三相反应界面Triple-phase Boundary13PEMEC中,阳极氧气主要产生在催化剂层与气体扩散层的交界处。In PEMEC,most anodic oxygen is produced at the bou

21、ndary of catalyst layer and gas diffusion layer.AEC中的反应和气泡产生的位置也是在极板凸起-碱液-电极(催化剂)三相交界。The reaction and bubbles in AEC are also at the plate bulge-alkali solution-electrode(catalyst)boundary.1 Mo,J.,Kang,Z.,Yang,G.,Li,Y.,Retterer,S.T.,Cullen,D.A.,Toops,T.J.,Bender,G.,Pivovar,B.S.,Green,J.B.,Jr.,et al

22、.(2017).In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells.J.Mater.Chem.A 5,1846918475.2 RWTH.Alternative vehicle propulsion system.2020.PEM燃料电池三相界面Triple-phase boundary of PEM full cell.引自文献2 From citation2碱性电解槽三相界面Triple-

23、phase boundary of alkaline electrolyzer1.质子交换膜的质子Proton on proton exchange membrane2.电极(Pt)上的电子Electron on electrode 3.气相的氧气 Oxygen in gas phase2212HO2eH O2+-+?1234A.真实的过程Real processB.传统的认知Traditional ideaC.三相界面Triple-phase boundary D.导电体(白色)非导电体(黄色)Electric conductor(white)Electric nonconductor(ye

24、llow)E.优化的催化剂布置Optimized catalyst arrangement 引自文献From citation1氧气气泡产生的三相界面Three-phase boundary caused by oxygen bubbles1.水作为反应物 H2O as reactant2.扩散层上的电子 Electron on the diffusion layer3.离聚物(ionomer)221H O2eO2H2-+-?1.碱液中的OH-OH-in alkaline water2.极板上的电子Electron on electrode plate3.碱液中的氧气Oxygen in alk

25、aline water 2212OH2eH OO2-?阳极Anode隔膜Diaphragm阳极碱液Alkaline solution on anodeOH-OH-阴极Cathode电流方向Current directione-降低碱液电解内阻Lower the Internal Resistance of Alkali Solution Electrolysis14Evaluation and optimization of the alkaline waterelectrolysis ohmic polarization:Exergy study.2016.碱液电解的各种欧姆损失Ohmic

26、losses in alkaline water electrolysis 零极距结构降低内阻Lower internal resistance with zero-polar-distance structure Source:D.Fritz,M.Carmo,J.Mergel,D.Stolten,Modeling of a PEM electrolyzer for component design,manuscript in preparation.PEM电解主要损失Main Losses in PEM Electrolysis15 Endplates Separator plates Cu

27、rrent collectors CCMs-Catalystlayers-Membrane更薄的质子膜Thinner proton membrane高活性催化剂High-activity catalyst 更薄/更均匀流场板Thinner/more uniform flow field plate导电性更好的双极板Bipolar plate with better conductivity提升PEM电解效率的关键是催化剂和膜电极。Catalyst&membrane electrode are key to making PEM electrolysis more efficient.流场有影响

28、,但不是主导因素。Flow field has influence,but it isnt the primary factor.双极板有影响,但主要在大电密 Bipolar plate has influence,but mainly on high current density.提升电密的关键是质子膜(厚度)和双极板。Proton membrane(thickness)and bipolar plate are two keys in raising current density.最后的瓶颈是流场(气泡及两相流)Flow field and two-phase flow are the

29、 last bottlenecks.AEC&PEMEC的典型电解特性Electrolytic Characteristics of AEC&PEMEC16Source:Mergel,J.;Carmo,M.;Fritz,D.L.:Status on Technologies for Hydrogen Production by Water Electrolysis,Transition to Renewable Energy Systems,Eds.:D.Stolten,V.Scherer,Wiley-VCH,Weinheim(2013),423-450碱液制氢和PEM制氢的工作点分布区域Lay

30、out of Operating Points of Alkaline Water Electrolysis&PEM Electrolysis17碱液制氢装置代表性企业 产品特征Providers of Alkaline Water Electrolysis Equipment-Product Features结构StructureNEL Hydrogen蒂森克虏伯ThyssenKrupp中船718718thResearchInstitute of CSSC苏州竞立Suzhou Jing Li Hydrogen Equipment Co.,Ltd.天津大陆Tianjin Mainland Hy

31、drogen Equipment Co.,Ltd.中电丰业SinoHy Energy隔膜(Diaphragm)涂覆(Coating)石棉/织物(聚苯硫醚)Asbestos/Fabric(Polyphenyl thioether)织物(Fabric)石棉/织物(Asbestos/Fabric)织物(Fabric)催化剂(Catalyst)镍钴铁(fe-ni-co)镍网(Nickel screen)镍网(Nickel screen)镍网(Nickel screen)镍网(Nickel screen)流场(Flow field)菱形+膨胀网(Rhombus+Tensilenet)乳突(Mastoid

32、)乳突(Mastoid)乳突(Mastoid)乳突(Mastoid)极板(Polar plate)镍网(Nickel screen)不锈钢(Stainless steel)不锈钢(Stainless steel)不锈钢(Stainless steel)不锈钢(Stainless steel)电解槽紧固方式(Fastening mode of electrolyzer)液压夹紧(Hydraulic tidal stream tightening)螺栓紧固(Screw tightening)螺栓紧固(Screw tightening螺栓紧固(Screw tightening螺栓紧固(Screw t

33、ightening系统集成方式(Systemintegration mode)一体式(Integrated)分体式(Split)分体式/一体式/集装箱(Split/Integrated/containerized)分体式/一体式(Split/Integrated)分体式/一体式/集装箱式(Split/Integrated/containerized18PEM制氢装置代表性企业Providers of Hydrogen Production Units Based on PEM Water ElectrolysisIEK-3:Electrochemical ProcessEngineering1

34、9企业Providers产品系列/工作压力Product Portfolio/Working Pressure规格 Specs(产氢速率Generation Rate Nm/h)系统能耗Energy Consumption(kWh/Nm H2)负载范围Load Range(%)ProtonNELHOGEN S/14 barHOGEN H/1530barHOGEN C/30 bar0.25-1.02-610-306.76.8-7.35.8-6.20-1000-1000-100Giner Electroch.SystemsHigh pressure/85bar30 kW/25 bar3.75.65

35、.45.4no detailsCET H2E5 E40/14bar5-2405no detailsH-TEC SystemsEL30/30 bar0.3-405.0-5.50-100Hydrogenics 康明斯CumminsHyLYZER/25 bar1-24.9(stack)6.7(system)0 100GEN3(1 MW)/30bar250no details0-150ITM PowerHPac,HCore,HBox,HFuel 15 bar0.6-354.8-5.0(system)no detailsSiemens100 kW(300 kWpeak)50 bar 20-50no de

36、tails0-300应用:宁夏宝丰能源光伏电解水制氢+煤化工项目(绿氢制甲醇)Application:Hydrogen Production by Photovoltaic Water Electrolysis&Coal Chemical Project in Baofeng Energy,Ningxia2050MW,10000Nm3/h AWE系统(一期 First-Stage)640MW光伏电站(Photovoltaic Power Station)全球单体最大甲醇装置(绿氢制甲醇)The Worlds Largest Methanol Production Entity(Based on

37、 Green Hydrogen)2021年立项的若干重大氢能项目Major Hydrogen Energy Projects Launched in 2021序号项目名称制氢规模(万吨/年)建设单位其它要点周期1鄂尔多斯市达拉特旗光储氢车零碳生态链示范项目0.93新建光伏40万kw,电化学储能8万kwh2021.9-2023.62鄂尔多斯市乌审旗风光融合绿氢化工示范项目1新建风电4.95万kw,光伏27万kw2021.9-2023.63鄂尔多斯市鄂托克前旗250MW光伏电站及氢能综合利用示范项目0.6新建光伏25万kw2021.9-2023.64鄂尔多斯市鄂托克前旗上海庙经济开发区光伏制氢项目

38、0.6光伏25万kw2021.11-2023.65鄂尔多斯市准格尔旗纳日松光伏制氢产业示范项目1三峡光伏40万kw2021.10-2023.66包头市达茂旗风光制氢与绿色灵活化工一体化项目1.78光伏20万kw,风电20万kw,储能3.5万kwh2021.10-2023.127包头市达茂旗20万kw新能源制氢工程示范项目0.78光伏8万kw,风电12万kw,储能2万kwh2021.7-2023.68张家口200MW/800MWh氢储能发电工程中国石油2021.9-2023.69氢-氧综合利用“电-氢-电”示范项目国家电投300MW纯氢燃气轮机发电212021年立项的若干重大氢能项目Major

39、Hydrogen Energy Projects Launched in 2021No.Project NamesProduction Scale(10 K tons/year)Construction unitsKey PointsWorkPeriod1Demonstration of Zero-Carbon Photohydrogen Storage Vehicles in Erdos0.93Newly-built Photovoltaic Plant(400,000 kw),Electrochemical Energy Storage(80,000 kwh)2021.9-2023.62D

40、emonstration of Green Hydrogen Chemical Industry in Erdos1Newly-built Wind Turbine(495,000 kw),Photovoltaic Plant(270,000 kw)2021.9-2023.63Demonstration of PV Power Station(250MW)and Hydrogen Energy in Erdos0.6Newly-Built Photovoltaic Plant(250,000 kw)2021.9-2023.64Photovoltaic Hydrogen Production P

41、roject in Erdos0.6Photovoltaic Plant(250,000 kw)2021.11-2023.65Demonstration of Photovoltaic Hydrogen Production Project in Erdos1Three GorgesPhotovoltaic Plant(400,000 kw)2021.10-2023.66Demonstration of Hydrogen Production and Green Chemical Industry in Baotou1.78Photovoltaic Plant(200,000 kw),Wind

42、 Turbine(200,000kw),Energy Storage(35,000 kwh)2021.10-2023.127Demonstration of Hydrogen Production by Renewable Energy in Baotou0.78Photovoltaic Plant(80,000 kw),Wind Turbine(120,000kw),Energy Storage(20,000 kwh)2021.7-2023.68Hydrogen Storage and Power Generation Project in Zhangjiakou,HebeiCNPC2021

43、.9-2023.69Demonstration of Water Electrolysis Hydrogen ProductionSPICPure Hydrogen Gas Power Generation(300MW)22未来5年可能的技术突破Possible Technological Breakthroughs over the Next Five Years制氢系统:单槽3000Nm3碱液制氢装置;MW级PEMEC制氢系统规模化商用;kW级SOEC系统商用Hydrogen production:a single-alkaline-electrolyzer system(3000Nm3)

44、;commercialized MW-class PEMEC system&kW-class SOEC system储氢系统:百花齐放,但难有大突破。Hydrogen storage:new systems keep springing up but with few substantial breakthroughs大规模氢井储氢技术示范 large-scale hydrogen storage wells;高压气氢70MPa III/IV型瓶广泛应用 wide application of high pressure gas-hydrogen(70MPa)III/IV 百公里级天然气管道掺

45、氢/纯氢管道示范 100-km-class gas pipeline&hydrogen-doped/pure hydrogen pipeline;氢气消纳:Hydrogen consumption:百万吨级绿氢制甲醇项目 million-ton-class projects for methanol production by green hydrogen;万吨级绿氨技术示范 10-thousand-ton-class projects for green ammonia technology;200kW以上燃料电池发电系统 over 200-kW-class system of fuel c

46、ell power generation;绿氢/绿氨发电技术示范 power generation technology by green hydrogen/green ammonia;模块化MW级氢储能系统 modular MW-class hydrogen energy storage system23我们的工作(2021年)OUR WORK IN 2021324研究定位 Research Focus研究定位:电解水制氢、储能及氢安全。Research Focus:Hydrogen Production by Water Electrolysis;Energy Storage;Hydrog

47、en Safety,including:AWE,PEMWE,AEMWE,etc.包括碱液电解(AWE)、纯水电解(PEMWE)、弱碱性阴离子膜电解(AEMWE)等。技术追求:高动态、长寿命、高安全、无人值守。Desirable Features:high dynamism;long durability;high security;full automation场景设定:风电耦合制氢(近期制氢、中期氢储能)。Settings:Wind Power Coupled Hydrogen Production(Near-term production,med-term storage)包括1-3MW陆

48、地/海上风电制氢/氢储能、3-7.5MW远海风电制氢,以及撬装站1MW网电站内制氢、250kW网电纯水制氢等Including 1-3MW onshore/offshore wind power hydrogen production/storage;3-7.5MW far-sea wind power hydrogen production;1MW hydraulic network power hydrogen production and 250kW network power PEMWE 主要对象:氢电耦合系统、电解系统集成、电解槽及分系统、关键部件。Main research obj

49、ects:Hydroelectric coupling system Electrolysis system integration Electrolytic Cell and Subsystem key components关键部件电解槽及分系统电解系统集成氢电耦合系统调峰peak load adjustment/储能energy storage/(调频)碱液制氢系统(AWE)电解槽electrolyzer催化剂catalyst隔膜Diaphragm/离子膜ionic membrane扩散层diffusion layer极板plate(流场&结构)附件系统attachment system循

50、环泵circulating pump纯化装置purifying unit控制系统control systemAC/DC,DC/DC电磁阀solenoid valve控制单元硬件hardware控制软件software纯水制氢系统(PEMWE)2021年氢能技术研究总思路Ideas Underlying Hydrogen Technology Research in 2021两条腿走路 A Two-pronged Method 1)学术研究Academic Research/技术创新Technological Innovation2)工程开发Project Development/技术落地Tec

51、hnological Implementation国内首个(the first of its kind in China)多槽系统构建的研究平台 Research Platforms Constructed多槽混联碱液制氢系统平台(multi-electrolyzer)20MPa高压PEM制氢系统平台(hydrogen production)可视化平台 visualized platform(1+3)氢安全研究平台(hydrogen safety)仿真平台 simulation platform(6)12345国内首个(the first of its kind in China)20MPa

52、PEMEC1碱液系统alkaline electrolysis system2碱液流场alkaline flow field3PEM零维zero dimension4PEM机理mechanism5氢气泄漏hydrogen leakage6冷能利用cold energy utilization系统 systems 机理mechanisms全覆盖 full coverage液压夹紧方式hydraulic clamps成果突出(Great Results)10多项专利(over 10 patents)关键技术研究进展-2021 Progress in Key Technologies1.碱液制氢 A

53、WE Hydrogen Production2.高压PEM制氢 High-Pressure PEM Hydrogen Production3.氢储能及系统 Hydrogen Storage and System4.氢安全 Hydrogen Safety1.碱性电解水制氢氢 AWE Hydrogen ProductionAWE电解槽零维建模 Zero-Dimensional Model of AWE。包括稳态能耗建模和气体纯度建模等(models of steady-state energy consumption and gas purity,etc.)建立碱液制氢系统的零维模型;Build

54、a zero-dimensional model 研究不同压力、温度、碱液浓度和电流密度下对电压和氧中氢的影响机制;Study the influence mechanism on voltage and hydrogen in oxygen at different pressures,temperatures,alkali concentrations and current densities课题/问题 Topics主要进展 Main Developments亮点 Highlights能耗模型 Energy Consumption ModelHtOOtHVoltage1.271.050.

55、080.0584.44 84.81 1.61.321.150.150.110.0981.80 81.80 81.80 2.452.161.931.260.330.270.220.1476.16 77.67 77.67 77.67 2.842.341.640.470.390.375.78 75.78 75.78 2.780.773.34 1.03 0.84 0.64 0.32 0.28 0.22 0.17 0.09 85.85 86.06 86.33 87.04 1.46 1.19 0.92 0.46 0.40 0.32 0.25 0.12 81.43 81.65 81.92 82.64 2.5

56、5 2.08 1.60 0.80 0.69 0.56 0.43250kW碱液制氢系统关键参数对比负荷/压力Part load100%70%40%30%20%100%70%40%30%20%100%70%40%30%20%1.61.310.51.61.310.51.61.310.5列表电流密度(mA/cm)实验值2仿真值21014784633.39 425.04 绝对/相对偏差22 0.22 76.06 76.27 76.55 77.26 2.76 2.13 1.07 0.93 0.75 0.58 0.29 74.00 74.27 74.99 4.11

57、 3.18 1.40 1.13 0.87 0.43 71.17 71.44 72.16 0.24 0.21 0.14 0.13 0.23-0.10 0.08 0.33 0.46 0.08 0.21 0.57 1.18 1.60-0.20-0.17-1.67%-1.47%-0.25-0.21-0.16 0.45%0.19%-0.15%-0.36-0.29-0.21-0.08 0.14%1.79%1.44%0.52%-0.28-0.19 0.01 2.36%1.99%1.04%0.27 1.60%量化控制和结构参数对性能的关系,形成数据分析平台The effect quantifying cont

58、rol and structural parameter have on performance;Formation of a data analysis platform2.质子交换膜电解水制氢PEM Water Electrolysis Hydrogen Production PEM电解槽三维两相流机理建模Build a three-dimensional and two-phase flow model 解决了高电流密度时,以往模型计算误差大的问题 Reduce big errors at high current densities 能够获取不同工况下电解槽内部状态,并可扩展至整个流场

59、的计算 Obtain the internal state and extend it to the calculation课题/问题 Topics 主要进展 Main Developments亮点 Highlights建立了更完善的三维两相流模型Better Flow Modeling建模方法Modeling Method气体含量分布 Gas Content Distribution大电流模拟准确 Accurate Simulation of High Current接触角与性能关系Relationship Between Contact Angle and Performance小论文一篇

60、在写 A Short Paper in Progress全电解池三维两相流建模Three-dimensional and two-phase flow modeling of electrolysis cells包括电化学(electrochemistry)传热(heat transfer)传质(mass transfer)氢渗透耦合模型搭建(modeling of hydrogen permeationcoupling)模型校核(model checking)不同操作条件(different operating conditions)及浸润性影响分析(wettability analysis

61、)等。31氢储能系统配置与经济性分析模型 System Configuration and Economic Analysis Model包括氢储能系统建模、氢储能系统能量管理策略、氢储能系统最优化配置方法、氢储能经济性分析模型等。Including:modeling,energy management strategy,optimal configuration method and economic analysis model 氢储能系统最优化配置(电池储能+氢储能)Optimal configuration of hydrogen storage(battery energy stor

62、age+hydrogen storage)氢储能系统建模 modeling 氢储能系统能量管理策略Energy management strategy 氢储能系统经济性分析Economic analysis课题/问题 Topics主要进展 Main Developments亮点 Highlights,tot=inv,tot+,tot,sal,tot,sal,tot=life 1life inv,tot=1.3 1.05 ,tot_优化算法Optimization AlgorithmOptimization Algorithm:PSO PSO 目标函数Objective FunctionObje

63、ctive Function:LCOELCOE最低约束条件ConstraintsConstraints:系统可靠性、系统可持续性Reliability&Sustainability Reliability&Sustainability 氢储能系统模型 Model of Hydrogen Storage System氢储能场景下度电成本0.7-1.4元/kWh;氢储能场景下系统启停频繁,需要更加智能化的能量管理策略。It brings down the cost to 0.7-1.4 yuan per kWh.Still,we need more intelligent strategies.3

64、.氢储能 Hydrogen Storage氢气泄漏扩散的解析方法建模Analytical Modeling of Hydrogen Leakage Diffusion圆柱坐标系下傅里叶方程在特定边界条件下的解析解、对流扩散过程耦合与数学近似 Equation Application CFD仿真方法用于氢泄漏模拟耗时耗资源,要模拟出系统所有可能的风险情况很困难。CFD is time-and resource-consuming,hard to simulate all possible risks.通过降维和结合机理的方式,解析地计算封闭空间内氢气射流转羽流之后,在空间顶部扩散的时变过程,获得

65、氢气浓度随时间变化的云图,降低计算耗时。New methods are used to reduce calculation time.课题/问题 Topics主要进展 Main Developments亮点 Highlights 模型思路 Ideas Behind the Model在圆柱域中解傅里叶微分方程,采用无源a-边界条件设计等速面近似法Solution to Fourier Equation 检测系统设计研究成果 Research Results 有效降低模型计算耗时,从而使得快速获取系统高风险失效形式及失效预后、异常隔离成为可能。Pros:Cutback in Calculati

66、on Time不足:解析模型的参数敏感性、普适性、准确性。Cons:parameter sensitivity,universality and accuracy1944.72s48.22s CFD 解析模型 Analytical Model计算耗时降低Cut in Time在0.1g/s流率下较准确预测0-10s、0-0.5m圆形区域内氢气扩散过程与浓度云图More Accurate Prediction4.氢安全 Hydrogen Safety 4.氢安全 Hydrogen Safety 在冬奥开闭幕式火炬台氢系统上应用 Application of Hydrogen Systems in

67、 the Torch Stage of Beijing 2022 Winter Olympic Games产业化推进 Commercialization Process1.成立海德氢能源科技(江苏)有限公司The Establishment of Haide Hydrogen Energy Technology Co.,Ltd2.设立“鄂尔多斯新能源产业创新中心“The Establishment of Erdos New Industry Innovation Center3.参与筹建张家口国家级氢能产业创新中心The Establishment of a National-Level Hy

68、drogen Energy Industry Innovation Centre in Zhangjiakou,Heibei海德氢能源科技有限公司 Haide Hydrogen Energy Technology Co.,Ltd 海德氢能与鄂尔多斯市、南京市及若干领先企业达成产业支持、示范运营、技术开发等多方面战略合作 Haide has worked with major players in hydrogen energy in Erdos and Nanjing for mutual support,demonstration operations and technology development鄂尔多斯新能源产业创新中心(2021.9.7)Erdos New Industry Innovation Center(2021.9.7)

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(清华大学:AEC PEMFC电解水制氢现状与挑战(2022)(36页).pdf)为本站 (芦苇) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
会员购买
客服

专属顾问

商务合作

机构入驻、侵权投诉、商务合作

服务号

三个皮匠报告官方公众号

回到顶部