上海品茶

您的当前位置:上海品茶 > 报告分类 > PDF报告下载

SESSION 23 - Energy-Efficient Connectivity Radios.pdf

编号:154994 PDF 209页 20.29MB 下载积分:VIP专享
下载报告请您先登录!

SESSION 23 - Energy-Efficient Connectivity Radios.pdf

1、ISSCC 2024SESSION 23Energy-Efficient Connectivity Radios23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference1 of 56A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFD

2、MA Concurrent Communication with Software-Defined ModulationJiaqi Shen*1,Fengyuan Zhu*2,Yang Liu1,Boxiao Liu1,Chunqi Shi1,Leilei Huang1,Long Xu1,Xiaohua Tian2,Runxi Zhang11East China Normal University,Shanghai,China2Shanghai Jiao Tong University,Shanghai,China23.1:A 44W IoT Tag Enabling 1s Synchroni

3、zation Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference2 of 56Growing Number of IoT Devices8.60 9.76 11.28 13.14 15.14 17.08 19.08 21.09 23.14 25.21 27.31 29.42 055200222023202420252026202720282

4、0292030Connected IoT Devices in billons*Data Source:Exploding Topics23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference3 of 56Challenges of IoT communicationModern Warehous

5、e Smart IndustryIncreasing number of devicesHigh Connection Capacity Easy to maintainLow-power Consumption23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference4 of 56Conventi

6、onal Backscatter Tags23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference5 of 56Multiple Tags Communication Challenge ICollisions occur with multiple tags23.1:A 44W IoT Tag

7、Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference6 of 56Multiple Tags Communication Challenge IIHigh power consumption23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concu

8、rrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference7 of 56Proposed SolutionLow-power wakeup function for OFDMASupports various modulationMulti-tag collision-free transmissions23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Co

9、ncurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference8 of 56Outline Motivation Proposed OFDMA Backscatter TagThe two-step synchronization methodSystem architecture implementationSoftware-defined backscatter modulation Measurement Results Conc

10、lusion23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference9 of 56Delay Differences in OFDMA Backscatter23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Conc

11、urrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference10 of 56Prior OFDMA Backscatter Tag23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-St

12、ate Circuits Conference11 of 56Prior OFDMA Backscatter TagCP can inherently tolerate delay differences High digital power consumption23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuit

13、s Conference12 of 56Adding WuRX to OFDMA Backscatter Tag23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference13 of 56Adding WuRX to OFDMA Backscatter TagISI and ICI occur in

14、this OFDMA system23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference14 of 56The Two-step Synchronization Method23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and O

15、FDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference15 of 56The Two-step Synchronization MethodHigh synchronization accuracyHigh power efficiency23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communicatio

16、n with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference16 of 56Outline Motivation Proposed OFDMA Backscatter TagThe two-step synchronization methodSystem architecture implementationSoftware-defined backscatter modulation Measurement Results Conclusion23.1:A 44W IoT

17、 Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference17 of 56System architecture23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Def

18、ined Modulation 2024 IEEE International Solid-State Circuits Conference18 of 56System architecture23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference19 of 56Standby and Rec

19、eiving Wake-up Frame23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference20 of 56WuRX Basic Block Diagram23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Con

20、current Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference21 of 56WuRX Basic Block Diagram23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-Stat

21、e Circuits Conference22 of 56Auto Threshold Control for WuRXThe wake-up frame is designed as a constant-weight code23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference23 of

22、56Auto Threshold Control for WuRXThe wake-up frame is designed as a constant-weight codeThe ATC monitors the weight of input codeThe ATC corrects the offset by CDAC23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE In

23、ternational Solid-State Circuits Conference24 of 56Auto Threshold Control for WuRXThe wake-up frame is designed as a constant-weight codeThe ATC monitors the weight of input codeThe ATC corrects the offset by CDACThe comparator self-calibrates its own offset23.1:A 44W IoT Tag Enabling 1s Synchroniza

24、tion Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference25 of 56Clock Frequency Error in WuRXErrors occur in correlators based on Hamming distance23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurr

25、ent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference26 of 56Manchester Decoder in WuRXThe wake-up packet uses Manchester encodingManchester decoder based on integratorTwice oversampling23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and O

26、FDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference27 of 56Manchester Decoder in WuRXThe wake-up packet uses Manchester encodingManchester decoder based on integratorTwice oversampling23.1:A 44W IoT Tag Enabling 1s Synchronization Ac

27、curacy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference28 of 56Synchronization and Waiting for Backscatter23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modula

28、tion 2024 IEEE International Solid-State Circuits Conference29 of 56SyncRX Block Diagram23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference30 of 56XTAL Oscillator Block Dia

29、gram Utilize injection for quick startup Low-power23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference31 of 56XTAL Oscillator Block Diagram Power start-up23.1:A 44W IoT Tag

30、Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference32 of 56XTAL Oscillator Block Diagram Using the POR signal as Vtuneto generate the down-chirp signal Injection23.1:A 44W IoT Tag Enabling 1s

31、 Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference33 of 56XTAL Oscillator Block Diagram Disable Ring Osc.23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with

32、Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference34 of 56XTAL Oscillator Block Diagram Output CLK10M,CLK1Monce the clock stabilizes23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE I

33、nternational Solid-State Circuits Conference35 of 56XTAL Oscillator Block Diagram Turn off half of the drivers to save power23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Confere

34、nce36 of 56Backscatter and Back to Standby23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference37 of 56Overall System architecture23.1:A 44W IoT Tag Enabling 1s Synchronizati

35、on Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference38 of 56Outline Motivation Proposed OFDMA Backscatter TagThe two-step synchronization methodSystem architecture implementationSoftware-defined backscatter modulation

36、 Measurement Results Conclusion23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference39 of 56Proposed Software-defined Modulation23.1:A 44W IoT Tag Enabling 1s Synchronization

37、 Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference40 of 56Proposed Software-defined Modulation23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation

38、 2024 IEEE International Solid-State Circuits Conference41 of 56Proposed Software-defined Modulation23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference42 of 56Outline Motiv

39、ation Proposed OFDMA backscatter tagThe two-step synchronization methodSystem architecture implementationSoftware-defined backscatter modulation Measurement Results Conclusion23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2

40、024 IEEE International Solid-State Circuits Conference43 of 56Die Micrograph 40nm CMOS 0.66mm2active area23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference44 of 56Two-step

41、 Synchronization Process Measurement*Afterglow of 200 measured results23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference45 of 56Two-step Synchronization Process Measuremen

42、t*Afterglow of 200 measured results23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference46 of 56Two-step Synchronization Process Measurement*Afterglow of 200 measured results

43、23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference47 of 56Two-step Synchronization Power Measurement23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concu

44、rrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference48 of 56Software-defined Modulation Measurement23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE Internation

45、al Solid-State Circuits Conference49 of 56Measurement Setup23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference50 of 56Aggregated Throughput Measurements23.1:A 44W IoT Tag E

46、nabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference51 of 56Throughput Measurement with Distance23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with S

47、oftware-Defined Modulation 2024 IEEE International Solid-State Circuits Conference52 of 56Spectrum of OFDMA Transmissions23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference

48、53 of 56Comparison to State of the ArtsThis WorkISSCC232ISSCC224ISSCC215ISSCC201ISSCC156Technology(nm)406565656565Frequency(MHz)43324002400240024005800Core area(mm2)0.660.7c0.420.410.340.26Concurrent transmission capabilityTheoretical:512 tagsMeasured:5 tagsNoNoNoNoNoModulation technique on tagSoftw

49、are-definedVerified:PSK/FSK/CSS/OOKGFSKQPSK,FSKSSBBPSK32-QAMWuRX sensitivity(dBm)-51.0N/A-43.4-43.5-42.5-23Wake-up/Standby power(W)1.111.625.54.52.8N/ABackscatter communication power(W)44a1.94883828113Range:equidistance TX and RX(m)52b44b562310.50.1RangeTag-to-TX(m)30125623150.5Tag-to-RX(m)901605623

50、60.5Maximum data rate(Mbps)512222.5aMeasured under typical soft-defined modulator configurations.bThe equal distance is determined by applying the Friis equation to the reported results.cChip area.23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Softwar

51、e-Defined Modulation 2024 IEEE International Solid-State Circuits Conference54 of 56Outline Motivation Proposed OFDMA backscatter tagThe two-step synchronization methodSystem architecture implementationSoftware-defined backscatter modulation Measurement Results Conclusion23.1:A 44W IoT Tag Enabling

52、1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference55 of 56Conclusion A 44uW OFDMA backscatter IoT tagA two-step synchronization method with 1us synchronization accuracy enable low-power OFMDA concurr

53、ent communication.An 1.1uW stand-by power,44uW communication power,backscatter IoT tag with 50m communication range.A software-defined backscatter modulation enables flexible deployment of IoT tags.23.1:A 44W IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Softwa

54、re-Defined Modulation 2024 IEEE International Solid-State Circuits Conference56 of 56AcknowledgeThanks for your attention!Special thanks to the contributions from IMCS Lab,ECNU:Xiaojian Zhu,Xin Zhang,Yuchao Tang,Xuhong Li,Nixiao Yan,Xiaoyuan Wu,Xinjie Zhang,Jianghu Hong and Zongshan Song 23.1:A 44W

55、IoT Tag Enabling 1s Synchronization Accuracy and OFDMA Concurrent Communication with Software-Defined Modulation 2024 IEEE International Solid-State Circuits Conference57 of 56Please Scan to Rate This Paper23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-9

56、8.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference1 of 3923.2:A 1mm2Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mb/sNicola Scolari,Franz X.Pengg,Konstantinos Manetakis,Camilo

57、 A.Salazar,Alexandre Vouilloz,Ernesto Prez Serna,Anjana Dissanayake,Pascal Persechini,Vladimir Kopta,Erwan Le Roux,Francesco Chicco,Stefano Cillo,Nicola Gerber,Cdric Barbelenet,Fabio Epifano,Paulo A.Dal Fabbro,Nicolas RaemyCSEM,Switzerland23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver

58、with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference2 of 39Outline Motivation Transceiver architecture Software Defined Radio Measurement results Conclusions23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver wi

59、th 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference3 of 39Motivation:Bluetooth Dual-Mode Bluetooth Classic:Widely deployedLegacy applicationsHigh-power due to stringent constraints Bluetooth Low-Energy:Low-power:best solu

60、tion for IoTRelaxed constraints Need an optimized solution for Bluetooth Dual Mode Applications 23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference4 of 39Moti

61、vation:Software-Defined RadioAdvanced technology Dense Digital integrationHW FSM can easily be outdated by standard evolutionSDR allows to update/modify/customize the Radio in an easier way*A Survey on Bluetooth 5.0 and Mesh:New Milestones of IoT,Junjie Y in et al.,ACM Transactions on Sensor Network

62、s23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference5 of 39Outline Transceiver architecture Software Defined Radio23.2:A 1mm2 Software-Defined Dual-Mode Bluet

63、ooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference6 of 39What Analog/RF designers see Digital baseband is black magic.Stand alone optimization of Analog/RF.Care about Matching,Noise,Pulling,PVT.PLL9b A

64、DC25%duty IQ/250%duty/2Digitally Controlled Delay LineDual Mode Digital PA(+10,+2 dBm)Dynamic Freq.DividersIQTX Power SenseActive-RC Low pass Filter(LPF)RC osc.for Cal.9b ADCLNATemperature SensorXTAL48 MHzVDDPAXOPTAT/Band-gap ReferenceDigitalBackend On-chip MatchSoftware Defined Dual-mode Bluetooth

65、ModemTX/RXCalibrationRF/Analog Front EndGPIO/SPIRSSI/AGC(LNA,LPF)HPLPESD Protection Circuitryn-pathmixersLDOsVDDAOn-chip LDO DecouplingCMOS 22nm FD-SOILoop-back4.8 GHz ADPLLDividerLoop FilterTDC/DTCAmplitude RegulationDigital FM Predistortionto ADC!PLL23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth

66、 Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference7 of 39What DSP designers see RF frontend is black magic Care about modulation schemes,timing,data-encoding,packet structure,23.2:A 1mm2 Software-Defined D

67、ual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference8 of 39Real Radio:Mix of Both Worlds!9b ADC25%duty IQ/250%duty/2Digitally Controlled Delay LineDual Mode Digital PA(+10,+2 dBm)Dynamic Fr

68、eq.DividersIQTX Power SenseActive-RC Low pass Filter(LPF)RC osc.for Cal.9b ADCLNATemperature SensorXTAL48 MHzVDDPAXOPTAT/Band-gap ReferenceDigitalBackend On-chip MatchSoftware Defined Dual-mode Bluetooth ModemTX/RXCalibrationRF/Analog Front EndGPIO/SPIRSSI/AGC(LNA,LPF)HPLPESD Protection Circuitryn-p

69、athmixersLDOsVDDAOn-chip LDO DecouplingCMOS 22nm FD-SOILoop-back4.8 GHz ADPLLDividerLoop FilterTDC/DTCAmplitude RegulationDigital FM Predistortionto ADC23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE

70、International Solid-State Circuits Conference9 of 39State-Of-The-Art Rx Performance =10log10 Best Rx FOM of 185dB Best in class sensitivity-98.2dBm Lowest reported power(RF+DBB)of 2.95mW Lowest area(RF+DBB)of 1.03mm223.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX P

71、ower and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference10 of 39Real Radio:TX path9b ADC25%duty IQ/250%duty/2Digitally Controlled Delay LineDual Mode Digital PA(+10,+2 dBm)Dynamic Freq.DividersIQTX Power SenseActive-RC Low pass Filter(LPF)RC osc.f

72、or Cal.9b ADCLNATemperature SensorXTAL48 MHzVDDPAXOPTAT/Band-gap ReferenceDigitalBackend On-chip MatchSoftware Defined Dual-mode Bluetooth ModemTX/RXCalibrationRF/Analog Front EndGPIO/SPIRSSI/AGC(LNA,LPF)HPLPESD Protection Circuitryn-pathmixersLDOsVDDAOn-chip LDO DecouplingCMOS 22nm FD-SOILoop-back4

73、.8 GHz ADPLLDividerLoop FilterTDC/DTCAmplitude RegulationDigital FM Predistortionto ADC23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference11 of 39Real Radio:R

74、X path9b ADC25%duty IQ/250%duty/2Digitally Controlled Delay LineDual Mode Digital PA(+10,+2 dBm)Dynamic Freq.DividersIQTX Power SenseActive-RC Low pass Filter(LPF)RC osc.for Cal.9b ADCLNATemperature SensorXTAL48 MHzVDDPAXOPTAT/Band-gap ReferenceDigitalBackend On-chip MatchSoftware Defined Dual-mode

75、Bluetooth ModemTX/RXCalibrationRF/Analog Front EndGPIO/SPIRSSI/AGC(LNA,LPF)HPLPESD Protection Circuitryn-pathmixersLDOsVDDAOn-chip LDO DecouplingCMOS 22nm FD-SOILoop-back4.8 GHz ADPLLDividerLoop FilterTDC/DTCAmplitude RegulationDigital FM Predistortionto ADC23.2:A 1mm2 Software-Defined Dual-Mode Blu

76、etooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference12 of 39Impairment Corrections(Mixed mode)9b ADC25%duty IQ/250%duty/2Digitally Controlled Delay LineDual Mode Digital PA(+10,+2 dBm)Dynamic Freq.Divi

77、dersIQTX Power SenseActive-RC Low pass Filter(LPF)RC osc.for Cal.9b ADCLNATemperature SensorXTAL48 MHzVDDPAXOPTAT/Band-gap ReferenceDigitalBackend On-chip MatchSoftware Defined Dual-mode Bluetooth ModemTX/RXCalibrationRF/Analog Front EndGPIO/SPIRSSI/AGC(LNA,LPF)HPLPESD Protection Circuitryn-pathmixe

78、rsLDOsVDDAOn-chip LDO DecouplingCMOS 22nm FD-SOILoop-back4.8 GHz ADPLLDividerLoop FilterTDC/DTCAmplitude RegulationDigital FM Predistortionto ADC23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE Interna

79、tional Solid-State Circuits Conference13 of 39Reconfigurable RF FrontendRXDETVDDAVDDAESDATTRXDETIQTXDETLOPLOMDPALP/HPAMPVDDATX DIV2PHASESHIFTERVDDPATXSWfrom ADPLLRX/TXSWN-PATH MIXRX DIV2from ADPLLTXSWM1M2M3M5M4M6VDDPALOPAMPLOPAMPVDDPA0.65V0.65V0.65VVDDADPALPLow power modeUp to 2dBmHigh power modeUp

80、to 10dBmM1M2M3M4VDDPALOPAMPLOMAMP1.65V0.65VVDDADPAHPM5M6VDDPA1.65VSingle RF/IO Port and no-off chip matching.HP/LP PA modes for best efficiency and supply voltage flexibility.23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Po

81、wer at 1Mbps 2024 IEEE International Solid-State Circuits Conference14 of 39Tx:Polar Modulation Modulation:Amplitude+Frequency(d(phase)/dt)ADPLL at 2x frequency to reduce DCO pulling Async FIFO:ADPLL dictates the data-rateDigital Modulator:data-rate independent Digital Power Amplifier(7 bits)23.2:A

82、1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference15 of 39Tx:issues Amplitude-Phase alignment Limited amplitude rate:Spectrum aliases at the amplitude rate DCO Pull

83、ing ADPLL modulation range for 8DPSKfs=48MHz,7-bits 6dB per doubling in fsaliasDCO PullingTime23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference16 of 39Tx:Po

84、lar Modulation Spectrum aliases are removed with an interpolator Amplitude-Phase alignment is fixed by fine-tuning the amplitude delay23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Soli

85、d-State Circuits Conference17 of 39Tx:Polar Modulation Residual Pulling Residual Pulling due to the PA 2ndharmonic FM predistortion in ADPLL with amplitude signal Digital controlled delay line on frequency path to align DCO and PA phases Careful layout to contain magnetic radiation23.2:A 1mm2 Softwa

86、re-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference18 of 39ADPLL range:8DPSK frequency signal More critical for EDR3(DEVM)phase change due to zero crossing Frequency peaks at F

87、s/2 With Fs=24MHz the peak can be 12MHz Signal can be partially distorted to limit peaks at 5MHz23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference19 of 39ADP

88、LL modulation range extensionUltra Low power DCO+Dividers DCO is amplitude regulatedDCO directly drives dynamic dividersDCO4 capacitor banksTrade off between frequency range and LSB stepDividerCurrent starved Injection locked topology for low input amplitude enabling a ULP DCOModulationGFSK:Modulati

89、on capacitor bank only(12kHz,9bits)8-DPSK:Self calibration allows extended range with the Modulation+Fine capacitor banks(up to 6MHz)DCO_PIBIBDCO_MDCO_MCKN_MCKN_PCKP_PCKP_MABCCKPCKNIOBBBCKPCKNIOCKPCKNIOCKPCKNIOCKP_PCKP_MCKN_MCKN_PIPQPIMQMQUADRATURE PHASE SHIFTERCSIL FREQUENCY DIVIDER BY 2CURRENT STA

90、RVED DYNAMIC LATCHIOCKPCKNABCBBIPQPIMQM+1+1+2+2+2+3+1+1DCO_PConventional divider input amplitudeProposed25%75%50%25%25%25%25%25%23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-Stat

91、e Circuits Conference20 of 39Optimizing Tx Output Power Applications may require different output power A PA designed for 10dBm is inefficient at 8dB backoff A Digital Power Amplifier with High Power and Low Power mode is proposed PA linearization per modeAM-AM,AM-PMM1M2M3M5M4M6VDDPALOPAMPLOPAMPVDDP

92、A0.65V0.65V0.65VVDDADPALPM1M2M3M4VDDPALOPAMPLOMAMP1.65V0.65VVDDADPAHPM5M6VDDPA1.65V23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference21 of 39Rx Chain-AGC AGC

93、 implemented as microcontroller 5 power detectors on the chain 0-20dB input att.,0-18dB LNA att.,0-36dB Filter att.23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Co

94、nference22 of 39Outline Transceiver architecture Software Defined Radio23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference23 of 39Software Defined Data-paths

95、Sources:ADCs(Rx),PH(Tx)Sinks:PH(Rx),ADPLL+PA(Tx)Basic processing blocks Connections can be programmed Limitations:Avoid non-sense connectionsLimit the complexity23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2

96、024 IEEE International Solid-State Circuits Conference25 of 39Simplified Tx Data Path Example for GFSK Generic blocks(CRC,DW,)Blocks are highly programmable Unused blocks are not connected23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity

97、 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference26 of 39Real example:Bluetooth Dual Mode Tx Multiple paths to address different modulations and data-rateRed:GFSK path for BR and BLEBlue:DPSK path for EDR FSK has several paths because of BLE 2Mbps and different freque

98、ncy deviations23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference27 of 39Packet handlers Packet structure can be described as a program Example:BLE packet fra

99、meRed:instructionsGreen:registers Can be implemented as dedicated microcontrollerif sync_word0=1 thensend 0 x55elsesend 0 xaaendifsend sync_wordget_fifo datasend dataget_fifo data#use r0 as packet lengthcopy data r0send dataif r0=0 jump crc23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver

100、 with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference28 of 39Interactions Packet Handler Data Path Two types of interactionsData“type”Direct commands PH can tag data with a data-type.Data are processed differently based

101、on data-type PH can send direct commands to change the DP behaviorsend sync_word#data-type 3 enables DWset_data_type 3get_fifo datasend data#if BLE2M decimator factor#should be divided by 2if datarate=BLE2M thensend_cmd decim div_2endif23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver wit

102、h 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference29 of 39Outline Measurement results23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbp

103、s 2024 IEEE International Solid-State Circuits Conference30 of 39Tx measurements(BLE)Average 10dBmAverage 2dBm23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Confere

104、nce31 of 39Tx measurements BLE 2MBPSOutput power 10dBm Peak BLE MASK23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference32 of 39Tx measurements EDR3(8DPSK)Outp

105、ut power 7.3dBmRMS(PAPR=3.5dB),DEVMRMS=5.4%No Emission ExceptionsNo Emission Exceptions(3 exceptions allowed)(limit 13%)23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circui

106、ts Conference33 of 39Pulling Compensation(EDR3)EVM:9.87%(RMS Avg.)1.28-0.96-0.64-0.32-0.00-0.32-0.64-0.96-1.28-1.30-1.300.001.28-0.96-0.64-0.32-0.00-0.32-0.64-0.96-1.28-1.30-1.300.00Without CompensationEVM:6.07%(RMS Avg.)With CompensationConstellation Plot for EDR 323.2:A 1mm2 Software-Defined Dual-

107、Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference34 of 39Rx PerformanceDynamic Range with AGC 1MBPSRx Sensitivity vs.Data rate for each channelInterference Resilience Performance 1MBPS-95.4

108、dBm-98.2 dBm-100.8 dBm-104.6 dBm23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference35 of 39State-Of-The-Art Rx Performance Best Rx FOM of 185dB Best in class

109、sensitivity-98.2dBm Lowest reported power(RF+DBB)of 2.95mW Lowest area(RF+DBB)of 1.03mm223.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference36 of 39Comparison

110、with State-of-the-Art TXThis work3ISSCC 20172ISSCC 20201ISSCC 20225ISSCC 20186ISSCC 20157JSSC 2015Technology22 FDSOI5522 FDSOI22654055Integration levelRF+DBBRF+DBBRF+DBBRFRF+DBBRF+DBBRF+DBBArea(mm2)RF0.7521.90.841.64(RF+DBB)1.32.9(RF+DBB)DBB0.280.2Not ReportedNo DBBNot ReportedStandardsBTBLE802.15.4

111、BTBLEBLEBLEBLEBLE802.15.4BLEVDDA(V)0.65(RX)0.8(TX)1.20.50.8(RX)0.75(TX)111.2VDDPA(V)0.8(LP)/1.76(HP)1.20.50.751Pout,peak(dBm)2.1(LP)/10.0(HP)83.3-2-3-20TX PDC Pout,peak(mW)RF+DBB11.7(LP)/63.4(HP)79.6(Only Core)7.8(Only Core)4.13.14.48*23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with

112、 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference37 of 39Comparison with State-of-the-Art RXThis work3ISSCC 20172ISSCC 20201ISSCC 20225ISSCC 20186ISSCC 20157JSSC 2015Sensitivity(dBm)LE 125kbpsLR 500kbpsBLE 1MbpsBLE 2MbpsB

113、REDR2EDR3-104.6-100.8-98.2-95.4-96.1-94.7-86.7-96.8-93.4-87-96.4-93.5-95.0-94.0-94.0-94.5-C/I 1Mbps(dB)Image-31.7(LP)/-33.6-36.1-39.0-1MHz-8.3(LP)/-8.2-4.1-1.0-2MHz-38.9(LP)/-41.5-51.0-42.0-41.0-31.0-25.0-3MHz-41.5(LP)/-46.8-54.0-41.0-43.0-36.0-35.0-RX PDC 1Mbps(mW)RF2.1(LP)/2.3612.01.93.62.33.38.8D

114、BB0.85(LP)/0.95-0.30.4-RX FOMRF185.0(LP)/184.8176.0183.6179.4180.4178.823.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference38 of 39Conclusions Software defined

115、 radio baseband enablesIncreased flexibilityFaster evolution with standardsResilient to impairments Radio designPerformance suited for IoTCapable of stringent constraints such as in Bluetooth classic23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm

116、Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuits Conference39 of 39References1 K Shibata et al.,A 22nm 0.84mm2 BLE Transceiver with Self IQ-Phase Correction Achieving 39dBImage Rejection and On-Chip Antenna Impedance Tuning,ISSCC,pp.398-400,Feb.2022.2 M.Tamura et al.

117、,“A 0.5V BLE Transceiver with a 1.9mW RX Achieving-96.4dBm Sensitivity and 4.1dBAdjacent Channel Rejection at 1MHz Offset in 22nm FDSOI,”ISSCC,pp.468-470,Feb.2020.3 W.Yang,A+8dBm BLE/BT Transceiver with Automatically Calibrated Integrated RF Bandpass Filterand-58dBc TX HD2,ISSCC,pp.136-138,Feb.2017.

118、4 R.Winoto et al.,9.4 A 22 WLAN and Bluetooth combo SoC in 28nm CMOS with on-chip WLAN digitalpower amplifier,integrated 2G/BT SP3T switch and BT pulling cancelation,ISSCC,pp.170-171,Feb.2016.5 Liu et al.,“An ADPLL-Centric Bluetooth Low-Energy Transceiver with 2.3mW Interference-Tolerant Hybrid-Loop

119、 Receiver and 2.9mW Single-Point Polar Transmitter in 65nm CMOS,”ISSCC,pp.444-445,Feb 2018.6 Y.-H.Liu et al.,“A 3.7mW-RX 4.4mW-TX Fully Integrated Bluetooth LowEnergy/IEEE802.15.4/Proprietary SoC with an ADPLL-Based Fast Frequency Offset Compensation in 40nm CMOS,”ISSCC,pp.236-237,Feb.2015.7 J.Prumm

120、el et al.,“A 10mW Bluetooth Low-Energy Transceiver With On-Chip Matching,”IEEE JSSC,vol.50,no.12,pp.3077-3088,Dec.2015.23.2:A 1mm2 Software-Defined Dual-Mode Bluetooth Transceiver with 10dBm Maximum TX Power and-98.2dBm Sensitivity 2.96mW RX Power at 1Mbps 2024 IEEE International Solid-State Circuit

121、s Conference40 of 39Please Scan to Rate This Paper23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference1 of 52A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communicat

122、ion with SmartphonesZiyi Chang*,Qijing Xiao*,Cheng Chen,Weixiao Wang,Xin Hu,Changgui Yang,Zhuhao Li,Yuxuan Luo,Bo ZhaoZhejiang University,Hangzhou,China Microaiot,Hangzhou,China23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE Intern

123、ational Solid-State Circuits Conference2 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tracking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Resu

124、lts Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference3 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip trackin

125、g techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circui

126、ts Conference4 of 52Background:Wireless Connectivity in IoTHealthcareSmart HomeStock ManagementManufactureLocationSmart Agriculture Low power Low costCompatible with BLE/Wi-Fi23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE Internat

127、ional Solid-State Circuits Conference5 of 52Motivation:Conventional IoT TagsActive RadioBattery/Wall PowerNFCFar-Field RFIDBidirectional CommunicationCompatible to Commodity DevicesBattery-FreeShort Range(10cm)Long RangeDedicated ReceiverBattery-FreeLNABLE BasebandPLLPAIoT AccessoriesNFCISO14443 Bas

128、ebandEnergyHarvesterModulator0 1 1 0 1IoT Accessories50RFID BasebandIoT AccessoriesEnergyHarvesterModulator0 1 1 0 15023.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference6 of 52RFID Baseband

129、IoT AccessoriesEnergyHarvesterModulator0 1 1 0 150LNABLE BasebandPLLPAIoT AccessoriesNFCISO14443 BasebandEnergyHarvesterModulator0 1 1 0 1IoT Accessories50Motivation:Conventional IoT TagsActive RadioNFCFar-Field RFIDEliminate Battery?Longer Range?Directly Received by Commodity Devices?23.3:A Passive

130、 Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference7 of 52BLEWi-FiLTEEnergy HarvesterModulator50SmartphoneTagWi-FiBasebandMotivation:Conventional Passive IoT TagsCW GeneratorSmartphoneEnergy HarvesterMod

131、ulator50TagBLE/Wi-FiBasebandWPT*:Wireless Power TransferTagEnergy HarvesterModulator50Demodulator10 1 1 0BLEBasebandSmartphoneAPCW-to-BLE/Wi-FiBLE-to-Wi-FiBLE-to-BLEClock:CrystalCommunication:SimplexIncident:Incompatible to Commodity DevicesSchtz,WPTC,2019Kuo,ISSCC,2023Chang,ISSCC,2023Clock:CrystalC

132、ommunication:SimplexIncident:Compatible to Commodity DevicesClock:CrystalCommunication:Half-DuplexIncident:Compatible to Commodity Devices23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference

133、8 of 52Motivation:Conventional Passive IoT TagsCW GeneratorSmartphoneEnergy HarvesterModulator50TagBLE/Wi-FiBasebandCW-to-BLE/Wi-FiBLE-to-Wi-FiBLE-to-BLEClock:CrystalCommunication:SimplexIncident:Incompatible to Commodity DevicesSchtz,WPTC,2019Kuo,ISSCC,2023Chang,ISSCC,2023Clock:CrystalCommunication

134、:SimplexIncident:Compatible to Commodity DevicesClock:CrystalCommunication:Half-DuplexIncident:Compatible to Commodity Devices23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference9 of 52BLEWi

135、-FiLTEEnergy HarvesterModulator50SmartphoneTagWi-FiBasebandMotivation:Conventional Passive IoT TagsCW-to-BLE/Wi-FiBLE-to-Wi-FiBLE-to-BLEClock:CrystalCommunication:SimplexIncident:Incompatible to Commodity DevicesSchtz,WPTC,2019Kuo,ISSCC,2023Chang,ISSCC,2023Clock:CrystalCommunication:SimplexIncident:

136、Compatible to Commodity DevicesClock:CrystalCommunication:Half-DuplexIncident:Compatible to Commodity Devices23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference10 of 52Motivation:Convention

137、al Passive IoT TagsWPT*:Wireless Power TransferTagEnergy HarvesterModulator50Demodulator10 1 1 0BLEBasebandSmartphoneAPCW-to-BLE/Wi-FiBLE-to-Wi-FiBLE-to-BLEClock:CrystalCommunication:SimplexIncident:Incompatible to Commodity DevicesSchtz,WPTC,2019Kuo,ISSCC,2023Chang,ISSCC,2023Clock:CrystalCommunicat

138、ion:SimplexIncident:Compatible to Commodity DevicesClock:CrystalCommunication:Half-DuplexIncident:Compatible to Commodity Devices23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference11 of 52B

139、LEWi-FiLTEEnergy HarvesterModulator50SmartphoneTagWi-FiBasebandMotivation:Conventional Passive IoT TagsCW GeneratorSmartphoneEnergy HarvesterModulator50TagBLE/Wi-FiBasebandWPT*:Wireless Power TransferTagEnergy HarvesterModulator50Demodulator10 1 1 0BLEBasebandSmartphoneAPClock:CrystalCommunication:S

140、implexIncident:Incompatible to Commodity DevicesSchtz,WPTC,2019Kuo,ISSCC,2023Chang,ISSCC,2023Clock:CrystalCommunication:SimplexIncident:Compatible to Commodity DevicesClock:CrystalCommunication:Half-DuplexIncident:Compatible to Commodity DevicesWi-Fi-to-?CW-to-BLE/Wi-FiBLE-to-Wi-FiBLE-to-BLE23.3:A P

141、assive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference12 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tracking techniqueWi-Fi 802.

142、11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference13 of 52

143、Proposed Wi-Fi-to-BLE Tag:System ConceptSystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBaseband23.3:A Passive Crystal-Less Wi-Fi-to-BL

144、E Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference14 of 52Proposed Wi-Fi-to-BLE Tag:System Concept“Track”Phase-Flipping PointsPhase-Flipping Point:VX,ac0VX,DC0Wi-Fi 802.11b Signal11MHz Barker Code1s+1-1+1+1-1+1+1+1-1-1-1System

145、ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBaseband23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communicat

146、ion with Smartphones 2024 IEEE International Solid-State Circuits Conference15 of 52Phase-Flipping Point:VX,ac0VX,DC0Wi-Fi 802.11b Signal11MHz Barker Code1s+1-1+1+1-1+1+1+1-1-1-1Proposed Wi-Fi-to-BLE Tag:System ConceptCCVRF-VRF+VDCS1VDCSnVDCCCVXVYSystem ConceptClock:Clock Recovery from Wi-Fi 802.11b

147、Communication:Frequency Division DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBaseband“Track”Phase-Flipping Points23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphon

148、es 2024 IEEE International Solid-State Circuits Conference16 of 52CCVRF-VRF+VDCS1VDCSnVDCCCVXVYProposed Wi-Fi-to-BLE Tag:System ConceptVDCS1AC-DC Rectifier at Phase-Flipping PointSystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compatible to Commod

149、ity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandPhase-Flipping Point:VX,ac0VX,DC0Wi-Fi 802.11b Signal11MHz Barker Code1s+1-1+1+1-1+1+1+1-1-1-1“Track”Phase-Flipping Points23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Co

150、mmunication with Smartphones 2024 IEEE International Solid-State Circuits Conference17 of 52Proposed Wi-Fi-to-BLE Tag:System ConceptPhase Flip in Incident Wi-Fi 802.11b SignalVoltage Fluctuation in Rectifier OutputSystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division

151、DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandPhase-Flipping Point:VX,ac0VX,DC0Wi-Fi 802.11b Signal11MHz Barker Code1s+1-1+1+1-1+1+1+1-1-1-1“Track”Phase-Flipping PointsVDCS123.3:A Passive Crystal-Less Wi-Fi-to-B

152、LE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference18 of 52Proposed Wi-Fi-to-BLE Tag:System ConceptFDD Communication&Clock RecoveryExtract Phase-Flipping PointsRecover Data with Barker(VDSSS)1s1sSystem ConceptClock:Clock Recove

153、ry from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandD-FF*D-FF*:D Flip Flop23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication

154、 with Smartphones 2024 IEEE International Solid-State Circuits Conference19 of 52Proposed Wi-Fi-to-BLE Tag:System ConceptFDD Communication&Clock RecoveryExtract Phase-Flipping PointsRecover Data with Barker(VDSSS)1s1sSystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Divisi

155、on DuplexIncident:Compatible to Commodity DevicesSmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandD-FF*D-FF*:D Flip Flop23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-Sta

156、te Circuits Conference20 of 52SmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandProposed Wi-Fi-to-BLE Tag:System ConceptXOR1)Wi-Fi Data Demodulation1sDelaySystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compa

157、tible to Commodity DevicesFDD Communication&Clock RecoveryExtract Phase-Flipping PointsRecover Data with Barker(VDSSS)1s1sD-FF23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference21 of 52Smar

158、tphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandProposed Wi-Fi-to-BLE Tag:System ConceptXOR1)Wi-Fi Data Demodulation1sDelaySystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexIncident:Compatible to Commodity DevicesFDD Comm

159、unication&Clock RecoveryExtract Phase-Flipping PointsRecover Data with Barker(VDSSS)1s1sD-FF500kHz1s652)Clock RecoveryWi-Fi-Controlled Counter=Frequency Signal Output=23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International So

160、lid-State Circuits Conference22 of 52SmartphoneWi-FiTagEnergy HarvesterDemodulator10 1 1 0Clock RecoveryModulator50BLEBasebandProposed Wi-Fi-to-BLE Tag:System ConceptXOR1)Wi-Fi Data Demodulation1sDelaySystem ConceptClock:Clock Recovery from Wi-Fi 802.11bCommunication:Frequency Division DuplexInciden

161、t:Compatible to Commodity DevicesFDD Communication&Clock RecoveryExtract Phase-Flipping PointsRecover Data with Barker(VDSSS)1s1sD-FF2)Clock RecoveryWi-Fi-Controlled Counter=Frequency Signal Output=Wi-Fi 802.11bSmartphoneCW VDSSSReflectorIFBLEVDSSSCW IFBLE3)Phase-Compensating BLE Backscatter with In

162、cident Wi-Fi 500kHz1s6523.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference23 of 52Proposed Wi-Fi-to-BLE Tag:System ArchitectureVDCEnergy Harvester(EHDN)AC-DC RectifierMatching NetworkEnergy

163、 Harvester(EHUP)AC-DC RectifierMatching NetworkWi-Fi Powering&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOVDCS1Wi-Fi Powering&DownlinkAntennaPhase-Compensating Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWEVDSSSD-FFDrivers&ReflectorCurrent-Starved

164、DCOLimitingAmplifierThreshold-Tunable AmplifierPhase-Flipping Points Threshold ControllerWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDigital UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on

165、Phase-Flip Tracking TechniqueWi-Fi-Controlled CounterEdge Combiner500kHz8MHz PulseILRO8MHz ClockVDELAY_EDGEVPWEDigital SPISPI Slaver/SPI Master23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Confe

166、rence24 of 52Proposed Wi-Fi-to-BLE Tag:System ArchitectureVDCEnergy Harvester(EHDN)AC-DC RectifierMatching NetworkEnergy Harvester(EHUP)AC-DC RectifierMatching NetworkWi-Fi Powering&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOVDCS1Wi-Fi Powering&DownlinkAntennaPhase-Compensatin

167、g Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWEVDSSSD-FFDrivers&ReflectorCurrent-Starved DCOLimitingAmplifierThreshold-Tunable AmplifierPhase-Flipping Points Threshold ControllerWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDig

168、ital UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on Phase-Flip Tracking TechniqueWi-Fi-Controlled CounterEdge Combiner500kHz8MHz PulseILRO8MHz ClockVDELAY_EDGEVPWEDigital SPISPI Slaver/SPI MasterVDCEnergy Harvester(EHDN)AC-DC Rectif

169、ierMatching NetworkEnergy Harvester(EHUP)AC-DC RectifierMatching NetworkWi-Fi Powering&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOWi-Fi Powering&DownlinkAntenna23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE

170、International Solid-State Circuits Conference25 of 52VDCEnergy Harvester(EHDN)AC-DC RectifierMatching NetworkEnergy Harvester(EHUP)AC-DC RectifierMatching NetworkWi-Fi Powering&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOVDCS1Wi-Fi Powering&DownlinkAntennaPhase-Compensating Wi-

171、Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWEVDSSSD-FFDrivers&ReflectorCurrent-Starved DCOLimitingAmplifierThreshold-Tunable AmplifierPhase-Flipping Points Threshold ControllerWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDigital

172、UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on Phase-Flip Tracking TechniqueWi-Fi-Controlled CounterEdge Combiner500kHz8MHz PulseILRO8MHz ClockVDELAY_EDGEVPWEDigital SPISPI Slaver/SPI MasterProposed Wi-Fi-to-BLE Tag:System Architect

173、urePhase-Compensating Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWE*VDSSSD-FFDrivers&ReflectorCurrent-Starved DCOLimitingAmplifierThreshold-Tunable AmplifierPhase-Flipping Points Threshold ControllerVPWEBackscatterChannel PlanControllerBLEBasebandVDCS1PWE*:Pulse-Width

174、Extender23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference26 of 52VDCEnergy Harvester(EHDN)AC-DC RectifierMatching NetworkEnergy Harvester(EHUP)AC-DC RectifierMatching NetworkWi-Fi Powerin

175、g&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOVDCS1Wi-Fi Powering&DownlinkAntennaPhase-Compensating Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWEVDSSSD-FFDrivers&ReflectorCurrent-Starved DCOLimitingAmplifierThreshold-Tunable AmplifierPhase-Flippin

176、g Points Threshold ControllerWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDigital UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on Phase-Flip Tracking TechniqueWi-Fi-Controlled CounterEdge Co

177、mbiner500kHz8MHz PulseILRO8MHz ClockVDELAY_EDGEVPWEDigital SPISPI Slaver/SPI MasterProposed Wi-Fi-to-BLE Tag:System ArchitectureWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDigital UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYDigital SPISPI Slaver/SPI

178、 MasterVDSSS23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference27 of 52Proposed Wi-Fi-to-BLE Tag:System ArchitectureVDCEnergy Harvester(EHDN)AC-DC RectifierMatching NetworkEnergy Harvester(

179、EHUP)AC-DC RectifierMatching NetworkWi-Fi Powering&Wi-Fi-to-BLE UplinkAntennaPower Management Unit(PMU)BGRPoRDecapLDOVDCS1Wi-Fi Powering&DownlinkAntennaPhase-Compensating Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bLPFFeedback8MHz ClockPWEVDSSSD-FFDrivers&ReflectorCurrent-Starved DCOLimiting

180、AmplifierThreshold-Tunable AmplifierPhase-Flipping Points Threshold ControllerWi-Fi 802.11b DemodulatorIdentity VerificationThreshold ControllerChannel PlanControllerDigital UnitBLEBasebandLPFWi-Fi DataDelay Line(1s)XORVDELAYEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on Phase-Flip

181、Tracking TechniqueWi-Fi-Controlled CounterEdge Combiner500kHz8MHz PulseILRO8MHz ClockVDELAY_EDGEVPWEDigital SPISPI Slaver/SPI MasterEdge DetectorEdge-Driven Mode-Switching Clock Recovery Based on Phase-Flip Tracking TechniqueWi-Fi-Controlled CounterEdge Combiner500kHz8MHz PulseILRO8MHz ClockVDELAY_E

182、DGEVDELAYWi-Fi Data23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference28 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip t

183、racking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State

184、Circuits Conference29 of 52Phase-Flip Tracking Technique 802.11b:1Mb/s Barker code spreading with DBPSK modulation.Barker Code1-1 1 1-1 1 1 1-1-1-1DataDifferentialEncoderLPFCarrierVDEVDSSSVFILTERRFRF23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartp

185、hones 2024 IEEE International Solid-State Circuits Conference30 of 52Phase-Flip Tracking TechniqueBarker Code1-1 1 1-1 1 1 1-1-1-1DataDifferentialEncoderLPFCarrierVDEVDSSSVFILTERRFRFRectifierLPF&Limiting AmplifierVDCS1 Phase-flipping point in 802.11b results in voltage fluctuation in the rectifier(V

186、DCS1).802.11b:1Mb/s Barker code spreading with DBPSK modulation.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference31 of 52Phase-Flip Tracking TechniqueBarker Code1-1 1 1-1 1 1 1-1-1-1DataD

187、ifferentialEncoderLPFCarrierVDEVDSSSVFILTERRFRFRectifierLPF&Limiting AmplifierVDCS1Phase-Flipping Point:Process Case1Process Case2Pre-Amplified Phase-Flipping Point:The shape and magnitude of voltage fluctuations vary in different cases.802.11b:1Mb/s Barker code spreading with DBPSK modulation.23.3:

188、A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference32 of 52DAC99DAC99FeedbackThreshold ControllerTTAPhase-Flip Tracking Technique Phase-flip tracking with TTA realizes low-power phase-flipping p

189、oints extraction.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference33 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tra

190、cking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Ci

191、rcuits Conference34 of 52Wi-Fi 802.11b DemodulatorVDSSSDelay Line(1s)VDELAYXORVXORLPFWi-Fi DataVDSSS01(+)0(+0)0(+0)1(+)1sVDELAY01(+)1(+)VXORWi-Fi Data*T*T=LPF Delay 0110Proposed demodulator realizes 1Mb/s 802.11b demodulation with 1.3W power.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating

192、 Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference35 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tracking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock re

193、coveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference36 of 52Edge-Driven Mode-Switching Clock RecoveryEdge Dete

194、ctorMod=5Mod=6Wi-Fi Data=1Wi-Fi Data=0Wi-Fi-Controlled CounterEdge CombinerVDELAYVDELAY_EDGE500kHz8MHz Pulse8MHz ILROWi-Fi DataVDELAY_EDGE8MHz Pulse8MHz Clock21043 2043 245Mod=6Mod=5Mod=5Mod=610110Wi-Fi-Controlled Counter:VDELAY01(+)1(+)500kHzProposed edge-driven mode-switching clock reco

195、very enables crystal-less operation.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference37 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem archite

196、cturePhase-flip tracking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE Internati

197、onal Solid-State Circuits Conference38 of 52Phase-Compensating Wi-Fi-to-BLE BackscatterProposed phase-compensating backscatter achieves the tag-to-smartphone BLE communication with an incident Wi-Fi 802.11b signal.RectifierCW VDSSSCW VDSSSVDSSS-1+1IFBLEWi-Fi DataBarker CodeWi-Fi 802.11b TX in Smartp

198、honeVDSSS-1+1CWWi-Fi DataBarker CodeBLE RXWi-FiTX50IFBLE VDSSSCW IFBLEVDCS1*Supporting 18 different Wi-Fi-to-BLE backscatter frequency plans with different fIFExample:Wi-Fi Ch7 to BLE Ch392442MHz2480MHzfIF=380.25MHz23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communica

199、tion with Smartphones 2024 IEEE International Solid-State Circuits Conference39 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tracking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi

200、-Fi-to-BLE backscatter Measurement Results Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference40 of 52Die Micrograph0.76 mm1.25 mmDigtal UnitEnergyHarvester(DN)EnergyHarvester(UP)

201、PMUDN*CLK*UP*65nm CMOS 0.95mm2AreaUP*:Phase-Compensating Wi-Fi-to-BLE Backscatter with Incident Wi-Fi 802.11bDN*:Wi-Fi 802.11b DemodulatorCLK*:Edge-Driven Mode-Switching Clock Recovery Based on Phase-Flip Tracking Technique23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD C

202、ommunication with Smartphones 2024 IEEE International Solid-State Circuits Conference41 of 52Measurement ResultsVDSSSVPWEVDELAYMeasured Signals in Wi-Fi 802.11b Demodulator4s Data Rate=1Mb/s001101Wi-Fi DataLPFPWEVDSSSD-FFAmplifierVPWEVDCS1Delay Line(1s)VDELAYLPFWi-Fi Data1122334423.3:A Passive Cryst

203、al-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference42 of 52Edge DetectorMod=5Mod=6Wi-Fi Data=1Wi-Fi Data=0Wi-Fi-Controlled CounterEdge CombinerVDELAYVDELAY_EDGE500kHz8MHz Pulse8MHz ILROMeasurement ResultsVDSSS

204、VPWEVDELAYMeasured Signals in Wi-Fi 802.11b Demodulator4s Data Rate=1Mb/s001101Wi-Fi Data11223344Measured Signals in Clock RecoveryWi-Fi DataVDELAY500kHz8MHz Pulse8 pulses in 1s 0101043210 45032 10 5 432 104321 01235 4Wi-Fi-Controlled Counter23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating

205、 Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference43 of 52Measurement ResultsClock Spectrum w/o and w/Clock Recoveryw/o Injection Lockw/Injection Lockw/o Injection Lockw/Injection LockPhase Noise w/o and w/Clock RecoveryCarrier Freq:8MHzProposed

206、clock-recovery technique improves the frequency accuracy.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference44 of 52Measurement ResultsOverall system power:17WFDD communication.WPT gain vs.

207、Wi-Fi TX-to-tag ranges:-36dB1m(tag:17W).BGR measurement:A stable reference voltage with a VDChigher than 1V.Over-the-Air MeasurementPower Transfer Gain (dB)Wi-Fi TX-to-Tag Range(m)1234-50-45-40-35-3000.511.5200.20.40.60.81Rectifier Output VDC(V)23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrat

208、ing Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference45 of 52Measurement ResultsReflected SignalBLE Ch392480MHzIncident SignalWi-Fi Ch72442MHzMeasured Spectrum of Wi-Fi-to-BLE CommunicationWi-Fi TX+BLE RXTagDemonstration of FDD CommunicationTable

209、t Screenshot:Demodulated Wi-Fi DataBLEWi-FiThe 802.11b signal from the Wi-Fi TX is demodulated into 1Mb/s baseband data.The BLE backscatter signal is received by the BLE RX,as shown on the screen.The spectrum shows the incident signal in Wi-Fi Ch7 is reflected into BLE Ch39.23.3:A Passive Crystal-Le

210、ss Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference46 of 52ComparisonThis WorkISSCC22 1VLSI21 2ISSCC23 4 ISSCC23 5 Wiliot Ltd.665221806565N.A.0.950.841.620.430.7N.A.WPT:Wi-FiBatteryWPT:CWWPT:LTEWPT:BLEWPT:Sub-1GWi-

211、FiBLEWuRXWuRXBLEN.A.DBPSKGFSKBC-Wi-Fi*BC-Wi-Fi*GFSKN.A.Wi-Fi to BLEActive BLECW to Wi-FiBLE to Wi-FiBLE to BLEActive BLEIncidentDBPSKCWGFSKGFSKBackscatterGFSKDBPSKDQPSKGFSKYesYesNoYesYesYesDownlink1 Mb/sN.A.62.5kb/s62.5kb/s1Mb/sN.A.Uplink1 Mb/sN.A.1Mb/s2Mb/s1Mb/s1Mb/s1741002.525*7.16N.A.YesNoNoNoNoN

212、.A.YesNoNoNoNoNoFDD CommunicationData rateActive GFSKActive GFSKUplinkModulationSystem Max.Power(W)SPECIFICATIONSTechnology(nm)Area(mm2)Uplink SchemeCrystal-LessFully-Compatibleto Commodity DevicesPower SchemeDownlink SchemeDownlink Modulation*Back-channel-Wi-Fi*Power varies in 1145W at fRO=33253MHz

213、Incident:Wi-FiBackscatter:BLE23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference47 of 52ComparisonThis WorkISSCC22 1VLSI21 2ISSCC23 4 ISSCC23 5 Wiliot Ltd.665221806565N.A.0.950.841.620.430.

214、7N.A.WPT:Wi-FiBatteryWPT:CWWPT:LTEWPT:BLEWPT:Sub-1GWi-FiBLEWuRXWuRXBLEN.A.DBPSKGFSKBC-Wi-Fi*BC-Wi-Fi*GFSKN.A.Wi-Fi to BLEActive BLECW to Wi-FiBLE to Wi-FiBLE to BLEActive BLEIncidentDBPSKCWGFSKGFSKBackscatterGFSKDBPSKDQPSKGFSKYesYesNoYesYesYesDownlink1 Mb/sN.A.62.5kb/s62.5kb/s1Mb/sN.A.Uplink1 Mb/sN.

215、A.1Mb/s2Mb/s1Mb/s1Mb/s1741002.525*7.16N.A.YesNoNoNoNoN.A.YesNoNoNoNoNoFDD CommunicationData rateActive GFSKActive GFSKUplinkModulationSystem Max.Power(W)SPECIFICATIONSTechnology(nm)Area(mm2)Uplink SchemeCrystal-LessFully-Compatibleto Commodity DevicesPower SchemeDownlink SchemeDownlink Modulation*Ba

216、ck-channel-Wi-Fi*Power varies in 1145W at fRO=33253MHz1Mb/s Demodulation23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference48 of 52ComparisonThis WorkISSCC22 1VLSI21 2ISSCC23 4 ISSCC23 5 Wi

217、liot Ltd.665221806565N.A.0.950.841.620.430.7N.A.WPT:Wi-FiBatteryWPT:CWWPT:LTEWPT:BLEWPT:Sub-1GWi-FiBLEWuRXWuRXBLEN.A.DBPSKGFSKBC-Wi-Fi*BC-Wi-Fi*GFSKN.A.Wi-Fi to BLEActive BLECW to Wi-FiBLE to Wi-FiBLE to BLEActive BLEIncidentDBPSKCWGFSKGFSKBackscatterGFSKDBPSKDQPSKGFSKYesYesNoYesYesYesDownlink1 Mb/s

218、N.A.62.5kb/s62.5kb/s1Mb/sN.A.Uplink1 Mb/sN.A.1Mb/s2Mb/s1Mb/s1Mb/s1741002.525*7.16N.A.YesNoNoNoNoN.A.YesNoNoNoNoNoFDD CommunicationData rateActive GFSKActive GFSKUplinkModulationSystem Max.Power(W)SPECIFICATIONSTechnology(nm)Area(mm2)Uplink SchemeCrystal-LessFully-Compatibleto Commodity DevicesPower

219、SchemeDownlink SchemeDownlink Modulation*Back-channel-Wi-Fi*Power varies in 1145W at fRO=33253MHzCrystal-less Operation23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference49 of 52This WorkIS

220、SCC22 1VLSI21 2ISSCC23 4 ISSCC23 5 Wiliot Ltd.665221806565N.A.0.950.841.620.430.7N.A.WPT:Wi-FiBatteryWPT:CWWPT:LTEWPT:BLEWPT:Sub-1GWi-FiBLEWuRXWuRXBLEN.A.DBPSKGFSKBC-Wi-Fi*BC-Wi-Fi*GFSKN.A.Wi-Fi to BLEActive BLECW to Wi-FiBLE to Wi-FiBLE to BLEActive BLEIncidentDBPSKCWGFSKGFSKBackscatterGFSKDBPSKDQP

221、SKGFSKYesYesNoYesYesYesDownlink1 Mb/sN.A.62.5kb/s62.5kb/s1Mb/sN.A.Uplink1 Mb/sN.A.1Mb/s2Mb/s1Mb/s1Mb/s1741002.525*7.16N.A.YesNoNoNoNoN.A.YesNoNoNoNoNoFDD CommunicationData rateActive GFSKActive GFSKUplinkModulationSystem Max.Power(W)SPECIFICATIONSTechnology(nm)Area(mm2)Uplink SchemeCrystal-LessFully

222、-Compatibleto Commodity DevicesPower SchemeDownlink SchemeDownlink Modulation*Back-channel-Wi-Fi*Power varies in 1145W at fRO=33253MHzComparisonUplink&Downlink Simultaneously23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE Internati

223、onal Solid-State Circuits Conference50 of 52Outline Background and Motivation Proposed Passive Crystal-Less Wi-Fi-to-BLE TagSystem architecturePhase-flip tracking techniqueWi-Fi 802.11b demodulatorEdge-driven mode-switching clock recoveryPhase-compensating Wi-Fi-to-BLE backscatter Measurement Result

224、s Conclusion23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference51 of 52Conclusion The proposed integrated Wi-Fi-to-BLE passive tag can conduct battery-free crystal-less FDD communication wi

225、th smartphones.The Wi-Fi 802.11b demodulation is achieved in a battery-free way by the phase-flip tracking technique.The off-chip crystal is eliminated and a reliable clock is recovered by the phase-flip tracking technique.The phase-compensating technique realizes the BLE backscatter on a complex in

226、cident Wi-Fi signal.23.3:A Passive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference52 of 52This work was supported by National Key R&D Program of China 2019YFB2204500 and NSFC 61974130.THANKS!23.3:A Pa

227、ssive Crystal-Less Wi-Fi-to-BLE Tag Demonstrating Battery-Free FDD Communication with Smartphones 2024 IEEE International Solid-State Circuits Conference53 of 52Please Scan to Rate This Paper 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Pa

228、ssive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO1 of 21 A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO Haijun Shao

229、1,Rui P.Martins 1,2,and Pui-In Mak11 University of Macau,Macao,China2 Instituto Superior Tcnico/UL,Portugal 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-

230、Transformer-Coupled Class-D VCO2 of 21 OutlineMotivationProposed Ultra-Low-Power(ULP)BLE ReceiverPassive Quadrature-Front-End(QFE)Double-Sided Double-Balanced Cascaded MixerDual-Transformer-Coupled Class-D VCOHybrid Low-IF FilterMeasurement ResultsConclusions 2024 IEEEInternational Solid-State Circu

231、its Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO3 of 21 Power&Linearity:From Active to Passive Front-Endsgmnonlinearity&powerLO divider&bufferVCO operates at x2fLOAc

232、tive:Industrial ULP BLE Receiver M.Tamura,et al.ISSCC20VRFDCfBPF0.5V ULV VCOoperating at 2fLO(4.8GHz)LO1LO2LO3LO44-Phase Non-overlap LO 2/fLO Solar EnergyI/QMixersTIALNTA0.5V 244LO1-4 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Qu

233、adrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO4 of 21 Power&Linearity:From Active to Passive Front-Endslinear&no static powerLO divider&bufferVCO operates at x2fLOVRFPipeline-Downmixing BB Extraction SchemeDCfHybrid Complex Filter Passive

234、Balun-LNA+SC N-Path FilterAn external VCO operating at 2fLO(4.8GHz)4Passive:Passive-LNA-Oriented ULP BLE Receiver H.Shao,et al.ISSCC22LO1-4LO1LO2LO3LO44-Phase Non-overlap LO 2/fLO 244 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Qu

235、adrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO5 of 21 Proposed Passive-Quadrature-Front-End(QFE)BLE ReceiverPassive-QFE:RF gain,robust wideband I/Q generation and input matchingDouble-Sided Double-Balanced Cascaded Mixer:high gain to suppr

236、ess BB noiseDual-Transformer-Coupled Class-D VCO:ultra-low power operating at fLOand 0.2V2-Phase LOHybrid Coupler Double-Sided Double-Balanced Cascaded MixerDCfHybrid Low-IF Filter INTHRCPLISOVRFTwo Step-Up TransformersTest BufferZ0 AvAv4-Phase RFCascaded downmixing generates passive gainDual-Transf

237、ormer-Coupled Class-D VCOPassive Quadrature-Front-End No gm nonlinearity at RF No static power at RF VCO operating at RF No LO divider and buffers 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Dou

238、ble-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO6 of 21 Passive-QFE(Gain&IL EM simulation)L=Z00 1-kHC2,VRFHybrid Coupler Z0=RS LS,TFkTFLP,TFCTFVRF,Q+-AvVRF,I+-CCC=kHCZ00 1-kHC2VTHRUVCPLAvEquivalentkHC=0.7L=4.68nHQ=9.3kTF=0.87LP,TF=2.01nHQP=7QS=10Voltage Gain&Loss(dB)Frequency(G

239、Hz)051.82.4315102.12.7Typical CornerVoltage GainTotal LossRobust wideband I/Q generation&input matchingHybrid Coupler+Transformer:12dB voltage gain and 4.8dB signal loss 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front

240、-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO7 of 21 Passive-QFE(Process Corners EM simulation)2.4GHz ISM band I/Q imbalance:2.5 in phase and 0.3dB in amplitudeInsensitive to process corners:0.58 in phase and 0.1dB in amplitudeAmplitude Imbalance(dB)Fr

241、equency(GHz)-0.802.32.452.60.8 0.1 dB(Process Corners)0.3 dB2.4GHz ISM BandPhase Relation(deg.)Frequency(GHz)9092.52.32.452.695 0.58(Process Corners)2.4GHz ISM Band 2.5(Deviation from 90)2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive

242、 Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO8 of 21 Double-Sided Double-Balanced Cascaded MixerSC network evolves from top-plate to double-sided downmixingHalf-size the switch to save power while preserving gain and IF BWDouble-Sided

243、Downmixing ConceptVoVOSC+VOSC+Vo2Vo2Top-PlateDownmixingTop-PlateDownmixingBottom-PlateDownmixingDouble-SidedDownmixingVi2+Vi2-+2C02C0Ron2Ron Vo+Vo+-Vi2+Vi2-Vi2+Vi2-VOSC+VOSC+VOSC+C0C0Double-SidedDownmixingRon Vo+Vi2+Vi2-VOSC+C0Double-Sided Downmixing ConceptVoVOSC+VOSC+Vo2Vo2Top-PlateDownmixingBotto

244、m-PlateDownmixingVi2+Vi2-+2C02C0Ron2Top-PlateDownmixingVo+-Vi2+Vi2-VOSC+VOSC+C0Double-SidedDownmixingRon Double-Sided Downmixing ConceptVo+Vi2+Vi2-VOSC+C0VoVOSC+VOSC+Vo2Vo2Top-PlateDownmixingBottom-PlateDownmixingVi2+Vi2-+2C02C0Top-PlateDownmixingVo-Vi2+Vi2-VOSC+VOSC+C0Ron2+Double-SidedDownmixingRon

245、 Double-Sided Downmixing ConceptVo+Vi2+Vi2-VOSC+C0Ron2VoVOSC+VOSC+Vo2Vo2Top-PlateDownmixingBottom-PlateDownmixingVi2+Vi2-+2C02C0Top-PlateDownmixingVo+-Vi2+Vi2-VOSC+VOSC+C0 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Fro

246、nt-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO9 of 21 Double-Sided Double-Balanced Cascaded MixerSupporting 2-phase 2.4GHz VCO eliminating divider-by-2 and LO buffersProviding passive voltage gain by cascading itself along downmixing processVOSC-VOSC+

247、VOSC+VOSC-VOSC+VOSC-VOSC+VOSC+VOSC-VOSC+VOSC+Vi2+Vi2-Vi2+Vi2-Vi2-Vi2+Vi2+Vi2-Vi2+Vi2-+Vo+Vo-Vo-VoVOSC+-Vo,M-Vo,M+Vo,M+Vo,M-Vo,1-Vo,1+Vo,1+Vo,18C08C0C0C0C0C0C0C0C0C0C0C0C0C0Ron Ron Vo2+Vo2-Ron44x smaller size 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Rec

248、eiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO10 of 21 Double-Sided Double-Balanced Cascaded MixerLarge M yields more gain,but narrows the signal BW due to charge sharing effect20%switch-on period()mismatch still le

249、ads to small gain variation(0.62dB)M=8 yields a total RF gain of 34.8dB(12dB from the QFE)0Theoretical Voltage Gain DC(dB)Cascaded Number(M)040M=810Vo,MViTLO=0.3Differential Voltage Gain(dB)BB Frequency(MHz)-100102030-10010 fLO=2.4 GHzVo,1 Vo,8 M=80.62dB(120%)2024 IE

250、EEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO11 of 21 Monte-Carlo Sim.of Passive-QFE&Mixer(Ideal LO)Both NF and gain are robust t

251、o the mismatch,from MC simulationsStandard deviation 11+T16TLP0Q0ZtankFoM Q2tank/(Pdc Ztank)Proposed Dual-Transformer-Coupled TankTypical Transformer-Coupled TankM.Babaie et al.,ISSCC13Ztank=2LP0Q0Qtank=(1-km)Q0Tank impedance:Tank Q-factor:Assume QP=QS=Q0 1 2024 IEEEInternational Solid-State Circuit

252、s Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO13 of 21 Dual-Transformer-Coupled Class-D VCOLow power consumption needs negative coupling,i.e.,kOSC0;LEscales up with

253、better coupling factor lower VCO power dissipation.600mVppkOSCVDD,OSC VOSC+VOSC-VC4-b Cap BankVaractorLPLSLPLSPower Dissipation(uW)507090110130-0.900.915002486LE(nH)Magnetic Coupling Factor(kOSC)kOSC=-0.7 2.4 GHzLE=1+T-2 kOSC-(1-)2k2OSCLPTT 2024 IEEEInternational Solid-State Circuits Conference23.4:

254、A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO14 of 21 Hybrid Low-IF Filter76W power budget at 0.9V;High rejection at adjacent channelISSCC20B.J.Thijssen et al.Unit Gm-CellCR1RC1CR1R

255、C1CR1RC1CR1RC1CR2RC2CR2RC2CR2RC2CR2RC2Gm20GmCAC2CAC2CACCAC+-+Gm20GmCAC2CAC2CACCAC+-+6Gm-+6Gm-+Test BufferCPosCCCCCCCCCPosCPosCPosCBCB4-Step Gain ControlCSCSCSCSCSCSCSCSVout,IVout,QVin,QVin,I2nd-order RC-CR Polyphase Filter2nd-order Active-LC Feedback NotchingCR1RC1CR1RC1CR1RC1CR1RC1CR2RC2CR2RC2CR2RC

256、2CR2RC2+6Gm-+6Gm-+Test BufferCPosCCCCCCCCCPosCPosCPosCBCBCSCSCSCSCSCSCSCSVout,IVout,QVin,QVin,I2nd-order RC-CR Polyphase Filter2nd-order Active-LC Feedback Notching+6Gm-+6Gm-+Test BufferCPosCCCCCCCCCPosCPosCPosCBCBCSCSCSCSCSCSCSCSVout,IVout,QVin,QVin,I2nd-order Active-LC Feedback Notching 2024 IEEEI

257、nternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO15 of 21 Chip Photo and Power Breakdown28nm CMOS0.53mm2core area0.2V for VCO0.9V for hy

258、brid filter1 mm0.7 mmLow-IF FilterMixerDual-Transformer-Coupled VCOHybrid CouplerBUFBUFStep-Up TransformerStep-Up TransformerPassive-QFELow-IF FilterVCO76 W(46%)91 W(54%)Power BreakdownTotal:167WArea BreakdownVCOLow-IF FilterMixerPassive-QFETotal:0.53mm20.08mm20.3mm20.15mm2 2024 IEEEInternational So

259、lid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO16 of 21 Measurement Results S11&GainS11is-10dB in the 2.4GHz ISM band without external componentsMax.

260、71dB gain,40dB rejection at 4MHz&25dB IRR-5-4-3-2-.352.42.452.52.55-25-20-15-10-5Frequency(MHz)Frequency(GHz)Gain(dB)S11(dB)2.4 GHz ISM BandS11 40 dB 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadratu

261、re-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO17 of 21 Measurement Results IIP3,B1dBand NFOOB-IIP3is 20.1dBm under a 2-tone test at(80MHz,158.2MHz offset)NF is 8.5dB 71dB gain,and up to 12dB 54dB gainFrequency Offset(MHz)B1dB and IIP3(dBm)020406

262、080100-40-30-20-1001020300.511.522.533.544.5551015202530B1dB Max.Gain and fLO=2.48 GHz20.1 dBmIIP3Frequency(MHz)NF(dB)NF=8.5 to 12 dB 54 dB Gain 71 dB Gain 60 dB Gain 66 dB Gain-3.5 dBm 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive

263、Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO18 of 21 Measurement Results VCO PN&FoMPN is-118.3dBc/Hz at 2.5MHz offset,and its FoM is 189dBc/Hz.2.5 MHz Offset:-118.3dBc/Hz(Meas.)fLO=2.33 GHzFoM(dBc/Hz)0819010k100k1

264、M10MOffset Frequency(Hz)2.5 MHz Offset:189dBc/Hz(Meas.)189.4dBc/Hz(Sim.)fLO=2.33 GHz 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Cla

265、ss-D VCO19 of 21 Performance Benchmark SFDR and PowerAchieved a 71.7dB SFDR at the lowest total power of 167WAdditional References:S1 B.W.Cook et al.,ISSCC06.S2A.Selvakumar et al.,ISSCC15.S3 B.J.Thijssen et al.,ISSCC20.S4 Z.Lin et al.,TMTT14.S5 S.Weinreich et al.,JSSC23.S6A.H.M.Shirazi et al.,CICC17

266、.S7 H.Liu et al.,ISSCC18.S8 Z.Lin et al.,ISSCC13.S9 Y.-H.Liu et al.,ISSCC13.S10 F.Zhang et al.,ISSCC13.S11 Z.Jiang et al.,CICC18.S12 F.-W.Kuo et al.,JSSC17.S13 Hidenori Okuni et al.,ISSCC16.00.51.01.52.02.54050607080SFDR(dB)Power(mW)ISSCC13 S92ISSCC20 S3ISSCC13 S8 CICC17 S6 JSSC17 S12 CICC18 S11TMTT

267、14 S4ISSCC13 S10ISSCC16 S13ISSCC18 S74 ISSCC06 S1ISSCC15 S2This work(w/VCO)5 3SFDR=32 IIP3+174-NF-10lg(BW)-SNRmin SNRmin=10 dB(w/o VCO)(w/o VCO)(w/VCO)JSSC23 S5(w/o VCO)2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-

268、End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO20 of 21 Comparison with State-of-the-ArtThis WorkISSCC22 3JSSC22 4JSSC23 6ISSCC17 2ApplicationsBLEBLEBLE/NB-IoTBLEBLERF Gain StagePassiveQFE(Hybrid Coupler+Two Step-Up Transformers)PassiveBalun-LNA+SC N-Path

269、 FilterPassive2:6 TransformerActiveCurrent-Reuse LNTAActive ULV Two-Stage LNAMixer or BB Gain StagePassiveDouble-Sided Double-Balanced Cascaded MixerPassivePipeline MixerPassiveCS|SC MixerPassiveSwitched-CapacitorAmplifierActive Voltage AmplifierActive BB Filter2nd-order RC-CR Network+Active-LC Feed

270、back for Notching5 Complex Poles+2 Real Poles2 Real Poles2 Real Poles3 Real PolesSupply Voltage(V)0.2&0.90.6&1.00.80.530.18RF-to-IF Gain(dB)71614739.834.5Total Power(W)167(w/VCO)266&(w/o VCO)2130&(w/o VCO)610&(w/o VCO)382(w/VCO)VCO Phase Noise(dBc/Hz)Offset-119.1 2.5 MHzN/AN/AN/A-113 to-115.5 2.5 MH

271、zNF(dB)8.56.14.74.511.3OOB-B-1dB(dBm)-3.5-3+1N/A-27.5OOB-IIP3(dBm)20.122.524-12-12.5SFDR(dB)SNRmin=10dB71.77776.95550.1IRR(dB)2537N/AN/AN/AActive Area(mm2)0.53 (w/VCO),0.38 (w/o VCO)0.5 (w/o VCO)0.8 (w/o VCO)0.8 (w/o VCO)1.65(w/VCO)Technology28nm CMOS 28nm CMOS 22nm FDSOI 28nm CMOS 28nm CMOS&:VCO no

272、t integrated.2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO21 of 21 ConclusionsA 167W,71.7dB SFDR Passive-QFE BLE Receiver

273、in 28nm CMOS:Passive Quadrature-Front-End Passive RF voltage gain and no static power at RF Offering robust wideband I/Q generation and input-impedance matching Offering high voltage gain to suppress BB noise without gmnonlinearity 2-phase LO suitable for 2.4GHz VCO,eliminating the LO divider and bu

274、ffersDual-Transformer-Coupled Class-D VCO Reducing the power dissipation of VCO by enhancing its Ztank Preserving a high FoM at 100W power budgetDouble-Sided Double-Balanced Cascaded Mixer 2024 IEEEInternational Solid-State Circuits Conference23.4:A 167W 71.7dB-SFDR 2.4GHz BLE Receiver Using a Passi

275、ve Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO22 of 21 Please Scan to Rate This Paper23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference1 o

276、f 36A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-EndAnoop Narayan Bhat,Paul Mateman,Zule Xu,Peter Vis,Paul Detterer,Gururaja Kasanadi Ramachandra,Yunus Baykal,Mario Konijnenburg,Yao-Hong Liu,Christian Bachmann,Peng Zhangimec,Eindhoven,The Netherlands23.5:A 7.6mW

277、IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference2 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm

278、Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference3 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear

279、 RF Front-End 2024 IEEE International Solid-State Circuits Conference4 of 36Ubiquitous 802.15.4a/z applications Applicationscm-level localization:indoor navigation7.60m23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circu

280、its Conference5 of 36Ubiquitous 802.15.4a/z applications Applicationscm-level localization:indoor navigationembedded security:digital car key7.60m23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference6 of 36I

281、ncreased blocker challenges Blockers moving closer:Wi-Fi 6E Blockers becoming wideband:Wi-Fi 6E,5G-CAComparable to an IR-UWB channel(250MHz IF)WiFiUWBHigh Band6.5G10G7.1GWi-Fi 5GWi-Fi 6E5.16GReciprocal mixing of blockers Preferred ring oscillator based PLLs Chen ISSCC 2022,Bechthum ESSCIRC 2022,Liu

282、JSSC 2023 WiFiUWBLOBase BandReciprocalmixingUWBBase BandWiFi5GIM2/IM3IMD products Spanning entire RX bandwidth23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference7 of 36Increase blocker resilience at low po

283、wer/supply Low powerTo support accelerated mobile and IoT deployments Low supplyTo support digital driven process scaling Decreased headroom,increased non-linear effects Techniques to increase blocker resilience at low power/supply7.60m23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience

284、with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference8 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024

285、IEEE International Solid-State Circuits Conference9 of 36rf_inBroadbandmatchingProposed CG-filter-based LNA Proposed feedback-bias-based VGTAInj.-lockedring oscillatorSPI&counter logicPAcounterTest&debug LNAVGTATIA4th-order LPFOutputDriverChipboundary499.2MHzBasebandoutputIQLO test o/pReceiver RF fr

286、ont-end:LNA Band pass filter to combat reciprocal mixing Techniques improving both IMD and compression23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference10 of 36rf_inBroadbandmatchingProposed CG-filter-bas

287、ed LNA Proposed feedback-bias-based VGTAInj.-lockedring oscillatorSPI&counter logicPAcounterTest&debug LNAVGTATIA4th-order LPFOutputDriverChipboundary499.2MHzBasebandoutputIQLO test o/pReceiver RF front-end:VGTA Isolates BPF from TIA Automatic-biasingExtend Gmrange and maximize linearity for a given

288、 Gm23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference11 of 36rf_inBroadbandmatchingProposed CG-filter-based LNA Proposed feedback-bias-based VGTAInj.-lockedring oscillatorSPI&counter logicPAcounterTest&de

289、bug LNAVGTATIA4th-order LPFOutputDriverChipboundary499.2MHzBasebandoutputIQLO test o/pReceiver:matching,baseband,LO,debug23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference12 of 36Outline Introduction Rece

290、iver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference13 of 36LNA requirements BPF withWide(5-11GHz)tuning rangeHigh Q

291、(9)High IMD and compression performance Low noise23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference14 of 36LNA evolution:CG-stage for cascode effect BPF withWide tuning range High Q Low noise High IMD and

292、 compression performance 23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference15 of 36LNA evolution:complementary CG Complementary action Increased compression point Headroom limitation For a typical VTH of

293、350mV VDSATlimited to 50mV each(800mV supply)|VDSAT|+|VTH|0V2|VDSAT|+2|VTH|VDSAT|+|VTH|23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference16 of 36LNA evolution:split in two branches Additional headroom for

294、 VDSATAvailable headroom increases by VTHfor each CG transistorrf_inMPMN2|VDSAT|+|VTH|VDD-2|VDSAT|+|VTH|23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference17 of 36LNA evolution:increase gain per given curr

295、ent Additional headroom for VDSATAvailable headroom increases by VTHfor each CG transistor To increase power efficiency per given SNRInclude biasing transistors of CG stage in signal processingrf_inMPMN23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IE

296、EE International Solid-State Circuits Conference18 of 36MNrf_iniIM2MPLNA evolution:capacitive coupling Shorts inputs of nMOS and pMOS CG transistors at RFProvides complementary action Increased compression pointSinks IM2 current of MPinto IM2 current of MN Increased IIP223.5:A 7.6mW IR-UWB Receiver

297、Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference19 of 36LNA evolution:transformer coupling Constructively combines signal power Destructively combines IM2 powerfurther increases IIP2MPMNrf_inrf_outiIM2iIM2isignalisignal23.5:A 7.6mW

298、 IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference20 of 36LNA:simulated performance improvements23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid

299、-State Circuits Conference21 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference22 of

300、 36Inverter-based VGTAviioutvddiMNMPvBNvBPRLargeCompatible with digital-driven technology scalingChallenging to achieve PVT robust GmviRRRioutvddiMNMPvBNvBP1x4xM0RLargeGm 1/RR vddi Gm23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International So

301、lid-State Circuits Conference23 of 36Back-gate biasingviRRRioutvddiMNMPvBNvBP1x4xM0RLarge Reverse bias:red curveHigher vddi for a given Gm ;limited Gmrange Forward bias:blue curveExtended Gm range ;lower vddi for a given Gm23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear

302、 RF Front-End 2024 IEEE International Solid-State Circuits Conference24 of 36Extending Gm-range for a given W/LviRRRioutvddiMNMPvBNvBP1x4xM0RLarge For vddi 0.7V:follow red curve maximize vddi Afterwards:transit into blue curve extend Gm-range23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resil

303、ience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference25 of 36Automatic back-gate control of the VGTAviRRRioutvddiMNMPvBNvBPvREF1x4xM0RLarge23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State

304、 Circuits Conference26 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement results Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference27 of 36Die

305、 micrographMixer,Baseband,driver and decapsILROSPIPA1mm1mmMatchingLNABGFB VGTA RX-AFE active area0.32mm2 22nm FDSOI process QFN package23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference28 of 36Gain and NF

306、 Maximum gain modeGain:52.8dBNF:6.6dB23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference29 of 36Blocker NF and compression23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Fr

307、ont-End 2024 IEEE International Solid-State Circuits Conference30 of 36IMD23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference31 of 36Power breakdown and performance across fRF23.5:A 7.6mW IR-UWB Receiver A

308、chieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference32 of 36Performance summary and comparison23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Confer

309、ence33 of 36DR vs power comparison of the SoTA23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference34 of 36Outline Introduction Receiver designArchitectureProposed linear BPF LNAProposed VGTA Measurement res

310、ults Conclusion23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference35 of 36Conclusion 12dB higher DR at 2x lower powerAll blocker effects considered More relevant with Wi-Fi 6E and 5G-CATechniques realizing

311、 the performance:C-CG circuit in LNA:breaking headroom-linearity trade-off auto-back-gate in VGTA:extending Gmat high linearity Enables further proliferation of 802.15.4a/z applicationsLow power mobile/IoT deploymentsCo-existence with Wi-Fi 6E and 5G-CA23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Bl

312、ocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference36 of 36Acknowledgement GlobalFoundries:Technical discussion and tape-out support Jan Craninckx:Technical discussions Johan vdH for system discussions,Sharada Prasad S.and Martijn H.for software help,and Huib V.for EM simulations23.5:A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End 2024 IEEE International Solid-State Circuits Conference37 of 36Please Scan to Rate This Paper

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(SESSION 23 - Energy-Efficient Connectivity Radios.pdf)为本站 (2200) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
会员购买
客服

专属顾问

商务合作

机构入驻、侵权投诉、商务合作

服务号

三个皮匠报告官方公众号

回到顶部