上海品茶

您的当前位置:上海品茶 > 报告分类 > PDF报告下载

T1 - Process-Scalable Low-Power Amplifiers.pdf

编号:155017 PDF 107页 10.04MB 下载积分:VIP专享
下载报告请您先登录!

T1 - Process-Scalable Low-Power Amplifiers.pdf

1、SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceISSCC 2024 TutorialsT1:Process-Scalable Low-Power AmplifiersMinkyu Je(mkjekaist.ac.rkr)KAIST,Republic of KoreaFebruary 18,2024Minkyu JeT1 Process-Scalable Low-Power Amplifiers1 of 106SpeakerVideo 2024 IEEE International Solid-State

2、Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers2 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Con

3、ferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers3 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmpli

4、fier BasicsMinkyu JeT1 Process-Scalable Low-Power AmplifiersAmplifier The goal of amplifier design is very simple,butTime DomainFrequency DomaintimetimeFrequencyFrequencyfsigfsig4 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDesign ConsiderationsMinkyu JeT1 Process-Scala

5、ble Low-Power AmplifiersAmplifier In reality,there are many barriers:Bandwidth.Time DomainFrequency DomaintimetimeFrequencyFrequencyfsigfsig5 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDesign ConsiderationsMinkyu JeT1 Process-Scalable Low-Power AmplifiersAmplifier In r

6、eality,there are many barriers:Linearity.Time DomainFrequency DomaintimetimeFrequencyFrequencyfsigfsig3fsig5fsig6 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDesign ConsiderationsMinkyu JeT1 Process-Scalable Low-Power AmplifiersAmplifier In reality,there are many barrie

7、rs:Noise.Time DomainFrequency DomaintimetimeFrequencyFrequency7 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDesign ConsiderationsMinkyu JeT1 Process-Scalable Low-Power AmplifiersAmplifier There are still other barriers:Swing range,*SR,*CMRR,*PSRR*SR:Slew rate*CMRR:Commo

8、n-mode rejection ratio*PSRR:Power supply rejection ratioOkay So,how can we resolve these problems?8 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloating Inverter Ampli

9、fiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers9 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceTrade-offT1 Process-Scalable Low-Power AmplifiersMinkyu JePower(Gm,ID)Bandwidth,Noise,Swing range,Linearity,Stability,Slew rate Designers

10、seek ways to pay less power and get what they want.10 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceExamples of Good Trade-offT1 Process-Scalable Low-Power AmplifiersMinkyu JeGm1Gm2GmNGm1Gm2GmNIDIDIDVINNVINPVINNVINPx2 Gmfor the same bias current(ID)xN Gmfor the same bias

11、current(ID)Current-reuse amplifierStacking amplifierExtended VersionIDL.Shen,JSSC18 S.Mondal,JSSC19 Level-shifter cap.11 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifiers in Continuous-time(CT)DomainMinkyu JeT1 Process-Scalable Low-Power Amplifiers CT amplifiers fo

12、r continuous-time domain applicationsG.Atzeni,SSCL20 Bio sensor interfaceCT-DSMAudioAnalog LDOAnalog filterThe CT domain applications thrive with power-efficient CT amplifiers.T1 Process-Scalable Low-Power Amplifiers12 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifi

13、ers in Discrete-time(DT)Domain Minkyu JeT1 Process-Scalable Low-Power Amplifiers CT amplifiers for discrete-time domain applicationsWireless communicationDT-DSMSwitched capacitor filterDigital LDOPipelined ADCG.Atzeni,SSCL20 However,some applications are not significantly improved by power-efficient

14、 CT amplifiers.T1 Process-Scalable Low-Power Amplifiers13 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifiers in Discrete-time(DT)Domain Minkyu JeT1 Process-Scalable Low-Power Amplifiers Fundamental limitation:switched-capacitor filter exampleVINVOUTVCMVCMCLoadVCMSam

15、pling operationVINVOUTVCMVCMCLoadVCMAmplifying operationStandbyActiveISIAThe same amount of current is always required,whether an amplifier is needed or not.ISis always equal to IA.T1 Process-Scalable Low-Power Amplifiers14 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAm

16、plifiers at Advanced Technology Nodes00.511.522.533.582216105CoreI/OTechnology Node nmSupply Voltage(V)Minkyu JeT1 Process-Scalable Low-Power Amplifiers CT amplifiers are hard to perform in advanced technology nodes.T1 Process-Scalable Low-Power Amplifiers15 of 106SpeakerVideo 2024 IEEE I

17、nternational Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers16 of 106SpeakerVideo 2024 IEEE Internationa

18、l Solid-State Circuits ConferenceMotivationMinkyu JeT1 Process-Scalable Low-Power AmplifiersProcess-scalable and low-power amplifier Continuous-time worldDiscrete-time worldT1 Process-Scalable Low-Power Amplifiers17 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceMotivation

19、Minkyu JeT1 Process-Scalable Low-Power AmplifiersResidue amplifiersLoop filtersNoise-shapingSAR ADCPipelinedADC ADCPerformance decided by efficientDiscrete-time domain ADCs Amplifier performance directly contributes to the performance metrics of the ADC.T1 Process-Scalable Low-Power Amplifiers18 of

20、106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGoal of TutorialMinkyu JeT1 Process-Scalable Low-Power Amplifierspre-amplifierGm-C amplifierGm-R amplifierRing amplifierFloating inverter amplifierRing amplifierYearsOthers Understand the operation,characteristics,and key design

21、considerations of promising dynamic amplifiers.T1 Process-Scalable Low-Power Amplifiers19 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGoal of TutorialMinkyu JeT1 Process-Scalable Low-Power Amplifiers Investigate the improvements made by dynamic amplifiers with different

22、 structures in the context of ADC performances.T1 Process-Scalable Low-Power AmplifiersBoris Murmann,ADC survey 202320 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloa

23、ting Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers21 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDynamic AmplifierMinkyu JeT1 Process-Scalable Low-Power Amplifierspre-amplifierGm-C amplifierGm-R amplifierRing amplif

24、ierFloating inverter amplifierRing amplifierYearsOthersT1 Process-Scalable Low-Power Amplifiers22 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDynamic AmplifierMinkyu JeT1 Process-Scalable Low-Power AmplifiersMotivated from the pre-amplifier of the comparatorTiming Diagr

25、amVX-/X+TimeclkcTimePrechargingphaseAmplifyingphaseVX+VX-Time =T1 Process-Scalable Low-Power Amplifiers23 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDynamic AmplifierMinkyu JeT1 Process-Scalable Low-Power AmplifiersMotivated from the pre-amplifier of the comparatorMeri

26、ts Low quiescent current Rail-to-rail output Compatible with digital CMOSScaling friendly low power But.can we use it as an operational amplifier?Cannot adjust output CM levelBoth output CM level and gain fall to 0 at the end of the amplifying phase Timing DiagramVX-/X+TimeclkcTimePrechargingphaseAm

27、plifyingphaseVX+VX-Time =T1 Process-Scalable Low-Power Amplifiers24 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:PrinciplesJ.Lin,ISCAS11Minkyu JeT1 Process-Scalable Low-Power AmplifiersCommon-mode voltage detector Can adjust output CM level Gain available

28、at the end of the amplifying phase Basic structure and operationT1 Process-Scalable Low-Power Amplifiers25 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:AdvantagesMinkyu JeT1 Process-Scalable Low-Power Amplifiers PerformancesJ.Lin,ISCAS11T1 Process-Scalable

29、 Low-Power Amplifiers26 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:LimitationsMinkyu JeT1 Process-Scalable Low-Power AmplifiersJ.Lin,ISCAS11G=()Transient gain equation 15.5dB gain(6x)achieved Low gainHighly depends on the input amplitude Poor linearityPr

30、one to PVT variations LimitationsT1 Process-Scalable Low-Power Amplifiers27 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:Prior Works(1)Gain-enhancement techniqueC-C.Liu,ISSCC17Minkyu JeT1 Process-Scalable Low-Power AmplifiersF.Geos,ISSCC1424dB gain(16x)ach

31、ievedSpeed reducedT1 Process-Scalable Low-Power Amplifiers28 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:Prior Works(2)Gain-stabilization techniqueH.Huang,ISSCC17Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power AmplifiersGain

32、 stabilized over PVT variationsG=G=Using V2T converter29 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:Prior Works(2)Gain-stabilization techniqueMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers2%gain variation achiev

33、ed over PVT variations30 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C Amplifier:Prior Works(3)M.S.Akter,VLSI17Minkyu JeT1 Process-Scalable Low-Power Amplifiers Capacitive-degeneration-based linearization techniqueT1 Process-Scalable Low-Power Amplifiers31 of 106Spea

34、kerVideo 2024 IEEE International Solid-State Circuits ConferenceMinkyu JeT1 Process-Scalable Low-Power Amplifiers Capacitive-degeneration-based technique =()2Transient gain equation:=Gain defined by the ratio of passive components High linearity100dB THD achieved=M.S.Akter,VLSI17Calibration for topt

35、requiredGm-C Amplifier:Prior Works(3)T1 Process-Scalable Low-Power Amplifiers32 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-R Amplifier:PrinciplesW.Jiang,ISSCC19Minkyu JeT1 Process-Scalable Low-Power AmplifiersBased on the FVF structure Good linearityComplete settlin

36、g Gain insensitive to timeNo reset phase High-speed operation enabled Basic structure and operation*FVF=Flipped voltage followerT1 Process-Scalable Low-Power Amplifiers33 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-R Amplifier:AdvantagesW.Jiang,ISSCC19Minkyu JeT1 Pro

37、cess-Scalable Low-Power Amplifiers Basic structure and operation 1,3 7,8 7,8 FVF gain equation Enable simple temperature compensationT1 Process-Scalable Low-Power Amplifiers34 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C/R Amplifier:TrendHighlighted Technical Evolvi

38、ngContributionApplicationProcessISCAS2012 Dynamic Gm-C Amplifier PowerAmplifier90nmISSCC2014 Cascode structureGainADC:Pipeline 28nmISSCC2017 Bypass current structureGainADC:Noise-shaping SAR28nmISSCC2017 PVT-stabilized structurePVTADC:Pipeline65nmVLSI2017 Capacitively degenerative linearization tech

39、niqueAccuracyAmplifier28nmISSCC2019 Dynamic Gm-R AmplifierSpeedPVTADC:Pipeline28nmMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers35 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGm-C/R Amps Applied To SOTA ADCsMinkyu JeT1 Process-

40、Scalable Low-Power Amplifiers 1.65GHz-BW 80dB-SNDRBoris Murmann,ADC survey 2023T1 Process-Scalable Low-Power Amplifiers36 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersF

41、loating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers37 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDynamic AmplifierMinkyu JeT1 Process-Scalable Low-Power Amplifierspre-amplifierGm-C amplifierGm-R amplifierRing amp

42、lifierRing amplifierYearsOthersFloating inverter amplifierT1 Process-Scalable Low-Power Amplifiers38 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFloating Inverter Amplifier(FIA)VINNCRESVCMCLKCLKVOPVONVINPCLKCLKCXCXMN1MP1MN2MP2Key Advantages Constant output CM voltage wi

43、thout CMFB Low noise and high energy efficiency due to the self-quenching operation(i.e.,dynamically scaled bandwidth)VRPVRN Circuit structureMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers39 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Co

44、nferenceFIA:Transient ResponseVOP/ONVRPVRNIAMPVINNVCMCLKCLKVINPCLKCLKCXCXMN1MP1MN2MP2IAMPCRES Operation:PrechargeVOPVONVRPVRNMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers40 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Trans

45、ient ResponseVINNVCMCLKCLKVOPVONVINPCLKCLKCXCXMN1MP1MN2MP2VRPVRNVOP/ONVRPVRNIAMPIAMPSelf-quenching operation(no static current)CRES Operation:AmplificationMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers41 of 106SpeakerVideo 2024 IEEE International Solid-Stat

46、e Circuits ConferenceFIA:Key AdvantagesSame Driving Strength(MP/MN)VOP/ONVRPVRN FIA behavior simulation under different process corners Constant VO,CMagainst the cornerVRPVRNVO,CMVIN,CMCXMNMPIO,CM0IAMP+IAMP-CRESMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers

47、42 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Key Advantages Constant VO,CMagainst the VIN,CMVOP/ONVRPVRNSame Driving Strength(MP/MN)FIA behavior simulation under different input common-modesVRPVRNVO,CMVIN,CMCXMNMPIO,CM0IAMP+IAMP-CRESMinkyu JeT1 Process-Scalable Lo

48、w-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers43 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Key AdvantagesVOP/ONVRPVRNVO,CM Constant VO,CMagainst device mismatchesSamples=200Same Driving Strength(MP/MN)Monte Carlo simulationVRPVRNVO,CMVIN,CMCXMNMPIO,CM0

49、IAMP+IAMP-CRESMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers44 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Key AdvantagesVINNVOPVONVINPCXCXMN1MP1MN2MP2VRPVRNX2.5 Can achieve low noise(X2.5 Gm/ID)Overdrive voltage Transcondu

50、ctanceDynamic currentCRES Transient analysis of operating points weak-inversion regionMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers45 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Other PropertiesConstant intrinsic gain(0)Sa

51、me Intrinsic gain+Different BWTransient gainOnly 2dB variationExponentially decaying BWWeak-inversion operationVDS 100mVVGS VTH=0=1 0=1Constant intrinsic gain regardless of ID=Acts like BJT Transient analysis of intrinsic gainVINNVOPVONVINPCXCXMN1MP1MN2MP2VRPVRNCRESMinkyu JeT1 Process-Scalable Low-P

52、ower AmplifiersT1 Process-Scalable Low-Power Amplifiers46 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Other Properties Intrinsic gain(time-invariant)+BW(time-variant)Transient gain()Exponentially decaying BW()()is always smaller than 0 Intrinsic gain vs transient ga

53、inVINNVOPVONVINPCXCXMN1MP1MN2MP2VRPVRNCRESConstant intrinsic gain(0)Only 2dB variationMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers47 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Other Properties=0 =2 ,2()=2 1/IDTransient g

54、ain:Input-referred noise power:=X.Tang,JSSC20VINNVOPVONVINPCXCXMN1MP1MN2MP2VRPVRNCRES Analysis of transient gain and noiseMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers48 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Limitati

55、onsLarger CRES Almost same AV0Larger CRES BW decaying speed Relation of CRESand FIA performanceLarger CRES IDdecaying speedLarger CRES Gm/IDMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers49 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conf

56、erenceFIA:LimitationsLarger CRES IDdecaying speedLarger CRES Gm/ID,2()=2 1/IDLarger CRES Smaller Input-Referred Noise Relation of CRESand FIA performanceTINT:Amplifying TimeMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers50 of 106SpeakerVideo 2024 IEEE Intern

57、ational Solid-State Circuits ConferenceVINNVOPVONVINPCXCXMN1MP1MN2MP2FIA:LimitationsCRES The gain depends on the input amplitudeSaturation(output)Saturation(output)Transient gain vs.Input AmplitudeMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers51 of 106Speak

58、erVideo 2024 IEEE International Solid-State Circuits ConferenceVINNVOPVONVINPCXCXMN1MP1MN2MP2FIA:LimitationCRESChallenges Sacrifice area for big CRES Nonlinearity Gain related to amplification time Transient gain vs Input AmplitudeMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable

59、Low-Power Amplifiers52 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(1)FIA1FIA2 Cascade structure X.Tang,ISSCC2018dB15.5dBVINNVOPVONVINPCXCXMN1MP1MN2MP2CRES Cascade structure easily achieves high gain without large CRES.Minkyu JeT1 Process-Scalable Low-Pow

60、er AmplifiersT1 Process-Scalable Low-Power Amplifiers53 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Cascade+negative feedback structure X.Tang,ISSCC20FIA:Negative FeedbackVO-1VIVDD1:ACVDD2:ACGND1:ACGND2:AC Gain=1/Stability?CSCFMinkyu JeT1 Process-Scalable Low-Power Amp

61、lifiers Tolerable to PVT variationT1 Process-Scalable Low-Power Amplifiers54 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Cascade+negative feedback structure X.Tang,ISSCC20FIA:Negative FeedbackVO-1VIVDD1:ACVDD2:ACGND1:ACGND2:ACCSCFDominant Polep1p2Minkyu JeT1 Process-Sc

62、alable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers55 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Cascade+negative feedback structure X.Tang,ISSCC20FIA:Negative FeedbackVO-1VIVDD1:ACVDD2:ACGND1:ACGND2:ACCSCFTimeBWMinkyu JeT1 Process-Scalable Low-Power A

63、mplifiersT1 Process-Scalable Low-Power Amplifiers56 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Noise analysisFIA:Negative Feedback Dominant pole p1(Conventional OTA)VICSGm1Gm2CFRo1VOVNCLp1p2CP,2 0 411211+12Noise Bandwidth(p1),2211Minkyu JeT1 Process-Scalable Low-Power

64、 AmplifiersT1 Process-Scalable Low-Power Amplifiers57 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Noise analysisFIA:Negative Feedback Dominant pole p1(Conventional OTA)Dominant pole p2(FIA,X.Tang,JSSC20),2211,221VICSGm1Gm2CFVOVNCLp1p2CP,2 0 411211+2Noise Bandwidth(p2)R

65、T=Equivalent resistance at the OTA outputCT=Equivalent capacitance at the OTA outputIndependent of the Gm1?Ro1Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers58 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference Noise analysisFIA:Negat

66、ive FeedbackVO-1VIVDD1:ACVDD2:ACGND1:ACGND2:ACCSCFDominant Polep1p2Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers59 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(2)Cascade+self-biased cascode structure X.Tang,ISSC

67、C21FIA1FIA2Self-biased Cascoded FIA3(38dB)CRESVCMCLKCLKVONVOPCLKCLKCXCXVIPVINVINVIPVIPVIPVINVIPVINVIP22dB22dBVIPVIPVDS+VON,Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers60 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior W

68、orks(2)Cascade+self-biased cascode structure X.Tang,ISSCC21FIA1FIA2VCMCLKCLKVONVOPCLKCLKCXCXVIPVINVINVIPVIPVIPVINVIPVINVIP22dB22dB High DC gain(82dB)No additional bias circuit required Low speed limited by quenching(Fast decaying BW)TimeBWSelf-biased CascodedFIA3(38dB)NormalCascodeCRESMinkyu JeT1 Pr

69、ocess-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers61 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(2)Cascade+self-biased cascode structure X.Tang,ISSCC21CRES2VCMCLKCLKVONVOPCLKCLKCXCXVIPVINVINVIPVIPVIPVINVIPVINVIPCRES1CLK,ECLK,ECR1

70、=0.5pFCR2=2pFCLK,ECLKFast settlingTwo-step operationDual reservoir cap.for fast settlingSingle cap.for fast quenchingFIA1FIA222dB22dBTimeSelf-biased CascodedFIA3(38dB)Maintain the BWBWMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers62 of 106SpeakerVideo 2024

71、IEEE International Solid-State Circuits ConferenceFIA:Prior Works(2)Cascade+self-biased cascode structure X.Tang,JSCC23Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers63 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works

72、(3)M2M4M6M8VSPVSN CRES1CRES2VDD_RES1VDD_RES2gnd_RES1gnd_RES2VBN1VBN2VBP1VBP2RA RA RA RA VOPM1M3M5M7VONVoltagetVDD_RES1/VDD_RES2VBN1/VBN2VOP/VONgnd_RES1/gnd_RES2VBP1/VBP2RA amp.400psrestVGS FIA with adaptive biasing W.Jiang,ASSCC22Internal adaptive biasVBN1,2,VBP1,2Large overdrive voltage(Vov)Fast sl

73、ewingOne-step amplification phaseSmall CRES2(1.6pF)Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers64 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(3)FIA with adaptive biasing W.Jiang,ASSCC22Gain enhancement(4dB)M2M

74、4M6M8VSPVSN CRES1CRES2VDD_RES1VDD_RES2gnd_RES1gnd_RES2VBN1VBN2VBP1VBP2RA RA RA RA VOPM1M3M5M7VON|+Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers65 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(4)VINNVOPCL FIA with

75、 dynamic biasing+CLS technique L.Meng,ISSCC22(CLS:correlated level shifting)High DC gain(66dB)with a simpler circuit structure and CLS techniqueOnly one reservoir capacitor(2pF)with a dynamic biasing techniqueCCLSCRESMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Ampl

76、ifiers66 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(4)FIA with dynamic body biasing+CLS technique L.Meng,ISSCC22(CLS:correlated level shifting)VINNVOPVth,PVth,NEstimate phaseUse one CRESto drive dynamic powerCCLSrecord VO=VO VCM No CLSBody potentialConn

77、ect VDD/GNDHigher|VTH|CL+CCLSCRESMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers67 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Prior Works(4)FIA with dynamic body biasing+CLS technique L.Meng,ISSCC22(CLS:correlated level shi

78、fting)VINNVOPVth,PVth,NLevel shift phaseVOPreturn to VCM for gain boosterBody potentialConnect sourcesLower|VTH|Second drive capabilityCCLSCL+=0+2+2CRESMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers68 of 106SpeakerVideo 2024 IEEE International Solid-State C

79、ircuits ConferenceFIA:Prior Works(4)FIA with dynamic body biasing+CLS technique L.Meng,ISSCC22(CLS:correlated level shifting)Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers69 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIA:Trend

80、Highlighted Technical EvolvingContributionApplicationProcessVLSI2019 Dynamic bandwidth scaling Dynamic operation(w/o bias and CMFB circuity)FIAComparator(Pre-amplifier)180nmISSCC2020 Negative feedback structure Cascade structureLinearityGainADC:Noise-shaping SAR40nmISSCC2021 Self-biased cascode stru

81、cture 2-step amplification phaseGainSpeedADC:Pipeline40nmISSCC2022 Dynamic body biasing CLS techniqueGainADC:Delta-sigma modulator55nmASSCC2022 Adopted-biased cascode structure 1-step amplification phaseSpeedADC:Pipeline28nmVLSI2023 Compensation techniqueStabilityADC:Delta-sigma modulator22nmMinkyu

82、JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers70 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceFIAs Applied To SOTA ADCs 500MHz-BW 94dB SNDRMinkyu JeT1 Process-Scalable Low-Power AmplifiersBoris Murmann,ADC survey 2023T1 Process-Scalabl

83、e Low-Power Amplifiers71 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R AmplifiersFloating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power

84、 AmplifiersT1 Process-Scalable Low-Power Amplifiers72 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceDynamic AmplifierMinkyu JeT1 Process-Scalable Low-Power Amplifierspre-amplifierGm-C amplifierGm-R amplifierRing amplifierRing amplifierYearsOthersFloating inverter amplifie

85、rT1 Process-Scalable Low-Power Amplifiers73 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRing Oscillator in FeedbackVINVOUTVCMVINXVCMRSTRSTRSTC1RSTCLoadVCMThe Most Critical ConsiderationStability Ring OscillatorKey advantages Good power efficiency Almost rail-to-rail out

86、put High gain from 3 inverter stages Fully compatible with digital CMOSMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers74 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceVDZ+Ring Amplifier(RAMP)VOSVINVOUTVCMVINXVCMVCMVOSVAVBPVBNRSTRS

87、TRSTC1C2C3RSTCLB.Hershberg,ISSCC12Key idea of stabilization Spilt signal into two separation paths Embed offset in each pathMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers75 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference0246810Tim

88、e ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPStabilizationSettlingVDZ+RAMP:PrinciplesVINVOUTVAVBNRSTSlewingThree operation phasesSlewingStabilizingSettlingB.Hershberg,CICC19VBPFeedback FactorMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers76 of 106SpeakerVideo

89、 2024 IEEE International Solid-State Circuits Conference00.20.40.60.81Time ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPRAMP:Slewing OperationVDZ+VINVAVBPVBNRSTCLVOUTFeedback FactorMAX VOV+Slewing Efficiency Theoretical MaximumB.Hershberg,CICC19Go to around the VCM(virtual ground)with maximally biased

90、current source(fast-slewing)VDDLarge signal comes inMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers77 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Stabilizing OperationVDZ+RSTFeedback FactorVOUTVOV+VOV+VOSVOSVINVA123456Time

91、ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBPVBNMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers78 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceVDZVBP+RAMP:Stabilizing OperationRSTFeedback FactorVOUT1.Reduced avg.VOV2.Reduced outp

92、ut current3.Reduced oscillationVOV+VOVVINVA123456Time ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBNVBPVBNVAInverter transfer characteristicVAMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers79 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Con

93、ferenceVDZVBP+RAMP:Stabilizing OperationRSTFeedback FactorVOUT1.Reduced avg.VOV2.Reduced output current3.Reduced oscillationVOV+VOVVINVA123456Time ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBNVAVBPVBNVAInverter transfer characteristicMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalab

94、le Low-Power Amplifiers80 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceVDZVBP+RAMP:Stabilizing OperationRSTFeedback FactorVOUT1.Reduced avg.VOV2.Reduced output current3.Reduced oscillationVOV+VOVVINVA123456Time ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBNVAVBPVBNVAInver

95、ter transfer characteristicMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers81 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceVDZVBP+RAMP:Stabilizing OperationRSTFeedback FactorVOUT1.Reduced avg.VOV2.Reduced output current3.Reduced o

96、scillationVOV+VOVVINVA123456Time ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBNVAVBPVBNVAInverter transfer characteristicMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers82 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceVDZ678910Time

97、ns00.20.40.60.811.21.4Voltage VVINVAVBNVBPVBP+RAMP:Settling OperationRSTFeedback FactorVOUTVOV+VOVVINVAVBNVAVBPVBNVAInverter transfer characteristicWeak-inversion steady stateMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers83 of 106SpeakerVideo 2024 IEEE Inte

98、rnational Solid-State Circuits ConferenceRAMP:Settling OperationVDZ+RSTVOUTSmall VOV+VINVAVBPVBNSmall VOV(Dominant pole)+Large roSmall VDSATLarge roSmall VDSAT Min VOV Low quiescent current Noise Filtering Min VVDSAT Wide swing High linearity Max ro High gain High linearityB.Hershberg,CICC19Advantag

99、es of weak-inversion steady state Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers84 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conference05560657075Loop Gain dB0510152025Time ns10GBW Hz0510152025-0.0500.050.10.15Vol

100、tage V0510152025Time ns0204060Phase Margin degreeRAMP:SimulationTime vs VOUT,loop gain,phase margin,and GBWLowHighFastSlowUnstableStableMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers85 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conferen

101、ceRAMP:Analysis of Dead-zone+VDZ+VINVAVBPVBNRSTVAPVANVOUTVTESTIOUTB.Hershberg,CICC20Class-BSub-threshold“dead-zone”Surrounded by“weak-zone”Fastest,most stable Dead-zone distortionMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers86 of 106SpeakerVideo 2024 IEEE

102、International Solid-State Circuits Conference+RAMP:Analysis of Dead-zoneVDZ+VINVAVBPVBNRSTVAPVANVOUTVTESTIOUTB.Hershberg,CICC20Class-ABOnly“weak zone”Always conducting Highest accuracy SlowerMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers87 of 106SpeakerVide

103、o 2024 IEEE International Solid-State Circuits ConferenceRAMP:Simulation of Dead-zone024681000.51Voltage VVINVAVBNVBP0246810Time ns00.51Voltage VVINVAVBNVBP024681000.51Voltage VVINVAVBNVBP0246810Time ns00.51Voltage VVINVAVBNVBPVDZ=40mVVDZ=80mVVDZ=120mVVDZ=200mVTransient response of RMAP for differen

104、t dead-zone sizes Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers88 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Simulation of Dead-zone UnstableLarge dead-zone Achieve fast settling speeds but sacrifice performances(Trade-o

105、ff!)Increase the dead-zoneSimulation results of ring amplifier Performances of RMAP vs.dead-zone size Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers89 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Prior Works(1)65dB-SNDR,15M

106、z-BW,and 90fJ/c.-step-FoMWpipelined ADC Good power efficiency but limited SNDR from class-B style operationImplementation of MDAC with RAMPB.Hershberg,VLSI12*MDAC:Multiplying DACMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers90 of 106SpeakerVideo 2024 IEEE I

107、nternational Solid-State Circuits ConferenceRAMP:Prior Works(2)76.8dB-SNDR,10Mz-BW,and 45fJ/c.-step-FoMWpipelined ADC Still need classic OTAB.Hershberg,ISSCC12Implementation of MDAC with RAMPClass-A(OTA)+Class-B(Ramp)Accurate amplification with OTA Fast slewing with RAMPMinkyu JeT1 Process-Scalable

108、Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers91 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Prior Works(3)75.9dB-SNDR,10Mz-BW,and 29fJ/c.-step-FoMWpipelined ADC Class B+AB style(coarse:high slew,fine:high accuracy)Embedded DZ at the STG2(A2)output B.

109、Hershberg,VLSI13Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers92 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Prior Works(4)88dB-SNDR,7.5Mz-BW,and 179.8dB-FoMStwo-step SAR ADCA.ElShater,ISSCC19Minkyu JeT1 Process-Scalable L

110、ow-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers93 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Prior Works(5)Many different ways to implement dead-zoneVOUTVINVOUTVINVOUTVINVB,HVB,LCapacitor typeResistor typeCMOS resistor typeB.Hershberg,ISSCC12Y.Lim,ISSC

111、C14J.Lagos,VLSI17 Need not external bias Slow(if need large DZ)More Scalable Less PVT robust Fast Need external biasMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers94 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMP:Prior Works(6

112、)Y.Lim,ISSCC15 Fully differential structure More robust to even-order distortion More robust to common-mode&supply rejectionY.Lim,VLSI17Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers95 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits Conferen

113、ceRAMP:TrendHighlighted Technical EvolvingContributionApplicationProcessVLSI2012 Ring amplifier(RAMP)Power EfficiencyADC:Pipeline180nmVLSI2013 Class B+AB(RAMP)AccuracyADC:Pipeline180nmVLSI2014 DZ implementation:self-biased with a passive resistorCircuit ComplexityADC:Two-step SAR ADC65nmVLSI2015 Ful

114、ly differential structureAccuracyADC:Two-step SAR ADC65nmVLSI2017 DZ implementation:self-biased with a CMOS resistor Pull-up/down transistorsSpeedADC:Pipeline28nmISSCC2019 HVT+LVT output stageAccuracyADC:Pipeline180nmISSCC2022 Class AB biased output stagePVT RobustnessADC:Two-step SAR ADC28nmISSCC20

115、23 Critical damped ring amplifierPVT RobustnessADC:Pipeline28nmMinkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers96 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRAMPs Applied to SOTA ADCs 1.6GHz-BW 105dB-SNDRMinkyu JeT1 Process-Scal

116、able Low-Power AmplifiersBoris Murmann,ADC survey 2023T1 Process-Scalable Low-Power AmplifiersTI architectureTI:Time-interleaved97 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceAmplifier BasicsLimitations of Classic AmplifiersIntroduction to Dynamic AmplifiersGm-C/Gm-R Am

117、plifiersFloating Inverter AmplifiersRing AmplifiersConclusionOutlineMinkyu JeT1 Process-Scalable Low-Power Amplifiers98 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceConclusionMinkyu JeT1 Process-Scalable Low-Power AmplifiersTime-interleavedArchitectureT1 Process-Scalable

118、 Low-Power Amplifiers99 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceConclusionMinkyu JeT1 Process-Scalable Low-Power AmplifiersPVT limitation(GHz)High resolution with Low speed(sub GHz)Area/PowerGood efficiency!Process scalableYes,but we have to address the PVT issue un

119、der sub-nm process technology!T1 Process-Scalable Low-Power Amplifiers101 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceRelated Papers in ISSCC 2024Minkyu JeT1 Process-Scalable Low-Power AmplifiersT1 Process-Scalable Low-Power Amplifiers9.2 A 2.08mW 64.4dB SNDR 400MS/s 12

120、b Pipelined-SAR ADC Using Mismatch and PVT Variation Tolerant Dynamically Biased Ring Amplifier in 8nm9.4 A 182.3dB FoMs 50MS/s Pipelined-SAR ADC Using Cascode Capacitively Degenerated Dynamic Amplifier and MSB Pre-Conversion Technique9.6 A 94.3dB SNDR 184dB FoMs 4th-Order Noise-Shaping SAR ADC with

121、 Dynamic-Amplifier-Assisted Cascaded Integrator102 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceReferences(1/4)Minkyu JeT1 Process Scalable Low Power AmplifierT1 Process Scalable Low Power AmplifierL.Shen,et al.,“A 1-V 0.25-W Inverter Stacking Amplifier With 1.07 Noise E

122、fficiency Factor,”JSSC 2018.S.Mondal,et al.,“A 13.9-nA ECG Amplifier Achieving 0.86/0.99 NEF/PEF Using AC-Coupled OTA-Stacking,”JSSC 2019.G.Atzeni,et al.,“A 0.45/0.2-NEF/PEF 12-nV/Hz Highly Configurable Discrete-Time Low-Noise Amplifier,”SSCL 2020.Amplifier Basics Introduction to Dynamic Amplifiers:

123、103 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceReferences(2/4)Minkyu JeT1 Process Scalable Low Power AmplifierT1 Process Scalable Low Power AmplifierJ.Lin,et al.,“A 15.5 dB,Wide Signal Swing,Dynamic Amplifier Using a Common-Mode Voltage Detection Technique,”ISCAS 2011.

124、F.Goes,et al.,“A 1.5mW 68dB SNDR 80MS/s 2 Interleaved SAR-Assisted Pipelined ADC in 28nm CMOS,”ISSCC 2014.C-C.Liu,et al.,“A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter,”ISSCC 2017.H.Huang,et al.,“A 12b 330MS/s Pipelined-SAR ADC with PVT Stabilized Dyn

125、amic Amplifier Achieving,”ISSCC 2017.M.S.Akter,et al.,“A Capacitively Degenerated 100-dB Linear 20150 MS/s Dynamic Amplifier,”JSSC 2018.W.Jiang,et al.,“A 7.6mW 1GS/s 60dB SNDR Single-Channel SAR-Assisted Pipelined ADC with Temperature-Compensated Dynamic Gm-R-Based Amplifier,”ISSCC 2019.Gm-C/Gm-R Am

126、plifiers:104 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceReferences(3/4)Minkyu JeT1 Process Scalable Low Power AmplifierT1 Process Scalable Low Power AmplifierX.Tang,et al.,“An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier,”JSSC 2020.X.Tang,et al.

127、,“A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier,”ISSCC 2020.X.Tang,et al.,“A 0.4-to-40MS/s 75.7dB-SNDR Fully Dynamic Event-Driven Pipelined ADC with 3-Stage Cascoded Floating Inverter Amplifier,”ISSCC 2021.X.Tang,et al.,“A Bandwidth-Adaptive Pipelined SAR

128、ADC With Three-Stage Cascoded Floating Inverter Amplifier,”JSSC 2023.W.Jiang,et al.,“A Single-Channel 14b 500 MS/s Pipelined-SAR ADC with Reference Ripple Mitigation Techniques and AdaptiveBiased Floating Inverter Amplifier,”ASSCC 2022.Y.Hu,et al.,“A 2.87W 1kHz-BW 94.0dB-SNDR 2-0 MASH ADC using FIA

129、with Dynamic-Body-Biasing Assisted CLS Technique,”ISSCC 2022.Floating Inverter Amplifiers:105 of 106SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceReferences(4/4)Minkyu JeT1 Process Scalable Low Power AmplifierT1 Process Scalable Low Power AmplifierB.Hershberg,et al.,“Ring Ampli

130、fiers for Switched-Capacitor Circuits,”ISSCC 2012.B.Hershberg,et al.,“A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring Amplifiers,”VLSI 2012.B.Hershberg,et al.,“A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring Amplifiers,”VLSI 2013.A.ElShater,et al.,“A 10mW 16b 15MS/s Two-S

131、tep SAR ADC with 95dB DR Using Dual-Deadzone Ring-Amplifier,”ISSCC 2019.Y.Lim,et al.,“A 100MS/s 10.5b 2.46mW Comparator-less Pipeline ADC Using Self-Biased Ring Amplifiers,”ISSCC 2014.J.Lagos.,“A Single-Channel,600Msps,12bit,Ringamp-Based Pipelined ADC in 28nm CMOS,”VLSI 2017.Y.Lim,et al.,“A 1mW 71.

132、5dB SNDR 50MS/s 13b Fully Differential Ring-Amplifier-Based SAR-Assisted Pipeline ADC,”ISSCC 2015.Y.Lim,et al.,“A Calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s Four-Stage Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,”VLSI 2017.https:/ Amplifiers:106 of 106Please Scan to Rate Please Scan to Rate This PaperThis Paper

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(T1 - Process-Scalable Low-Power Amplifiers.pdf)为本站 (2200) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
会员购买
客服

专属顾问

商务合作

机构入驻、侵权投诉、商务合作

服务号

三个皮匠报告官方公众号

回到顶部