上海品茶

您的当前位置:上海品茶 > 报告分类 > PDF报告下载

国际能源署(IEA):到2050年实现净零:全球能源部门的路线图(英文版)(224页).pdf

编号:39160 PDF 224页 4.65MB 下载积分:VIP专享
下载报告请您先登录!

国际能源署(IEA):到2050年实现净零:全球能源部门的路线图(英文版)(224页).pdf

1、Net Zero by 2050 A Roadmap for the Global EnergySectorNet Zero by 2050 A Roadmap for theGlobal Energy SectorNet Zero by 2050 Interactiveiea.li/nzeroadmapNet Zero by 2050 Dataiea.li/nzedata The IEA examines the full spectrum of energy issues including oil, gas and coal supply and demand, renewable en

2、ergy technologies, electricity markets, energy efficiency, access to energy, demand side management and much more. Through its work, the IEA advocates policies that will enhance the reliability, affordability and sustainability of energy in its 30 member countries, 8 association countries and beyond

3、.Please note that this publication is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/t&c/This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the d

4、elimitation of international frontiers and boundaries and to the name of any territory, city or area.Source: IEA. All rights reserved.International Energy Agency Website: www.iea.orgIEA member countries: Australia Austria BelgiumCanadaCzech Republic DenmarkEstoniaFinland France Germany Greece Hungar

5、yIreland ItalyJapanKorea Luxembourg Mexico Netherlands New Zealand NorwayPoland Portugal Slovak Republic Spain Sweden Switzerland Turkey United Kingdom United StatesThe European Commission also participates in the work of the IEAIEA association countries:BrazilChinaIndiaIndonesiaMoroccoSingaporeSout

6、h AfricaThailandINTERNATIONAL ENERGYAGENCYForeword 3 ForewordWeareapproachingadecisivemomentforinternationaleffortstotackletheclimatecrisisagreatchallengeofourtimes.Thenumberofcountriesthathavepledgedtoreachnetzeroemissionsbymidcenturyorsoonaftercontinuestogrow,butsodoglobalgreenhousegasemissions.Th

7、isgapbetweenrhetoricandactionneedstocloseifwearetohaveafightingchanceofreachingnetzeroby2050andlimitingtheriseinglobaltemperaturesto1.5C.Doingsorequiresnothingshortofatotaltransformationoftheenergysystemsthatunderpinoureconomies.Weareinacriticalyearatthestartofacriticaldecadefortheseefforts.The26thC

8、onferenceoftheParties(COP26)oftheUnitedNationsFrameworkConventiononClimateChangeinNovemberisthefocalpointforstrengtheningglobalambitionsandactiononclimatebybuildingonthefoundationsofthe2015ParisAgreement.TheInternationalEnergy Agency (IEA) has been working hard to support the UK governments COP26Pre

9、sidencytohelpmakeitthesuccesstheworldneeds.IwasdelightedtocohosttheIEACOP26NetZeroSummitwithCOP26PresidentAlokSharmainMarch,wheretopenergyandclimateleadersfrommorethan40countrieshighlightedtheglobalmomentumbehindcleanenergytransitions.Thediscussionsatthateventfedintothisspecialreport,notablythrought

10、heSevenKeyPrinciplesforImplementingNetZerothattheIEApresentedattheSummit,whichhavebeenbackedby22ofourmembergovernmentstodate.Thisreportmapsouthowtheglobalenergysectorcanreachnetzeroby2050.IbelievethereportNetZeroby2050:Aroadmapfortheglobalenergysystemisoneofthemostimportantandchallengingundertakings

11、intheIEAshistory.TheRoadmapistheculminationoftheIEAspioneeringworkonenergydatamodelling,combiningforthefirsttimethecomplexmodelsofourtwoflagshipseries,theWorldEnergyOutlookandEnergyTechnologyPerspectives.ItwillguidetheIEAsworkandwillbeanintegralpartofboththoseseriesgoingforward.Despitethecurrentgapb

12、etweenrhetoricandrealityonemissions,ourRoadmapshowsthattherearestillpathwaystoreachnetzeroby2050.Theoneonwhichwefocusisinouranalysisthemosttechnicallyfeasible,costeffectiveandsociallyacceptable.Evenso,thatpathway remains narrow and extremely challenging, requiring all stakeholders governments,busine

13、sses,investorsandcitizenstotakeactionthisyearandeveryyearaftersothatthegoaldoesnotslipoutofreach.Thisreportsetsoutclearmilestonesmorethan400intotal,spanningallsectorsandtechnologiesforwhatneedstohappen,andwhen,totransformtheglobaleconomyfromonedominatedbyfossilfuelsintoonepoweredpredominantlybyrenew

14、ableenergylikesolarandwind.Ourpathwayrequiresvastamountsofinvestment,innovation,skilfulpolicydesignandimplementation,technologydeployment,infrastructurebuilding,internationalcooperationandeffortsacrossmanyotherareas.SincetheIEAsfoundingin1974,oneofitscoremissionshasbeentopromotesecureandaffordableen

15、ergysuppliestofostereconomicgrowth.ThishasremainedakeyconcernofourRoadmap,drawingonspecialanalysiscarriedoutwiththeInternationalMonetaryFundandtheInternationalInstituteforAppliedSystemsAnalysis.ItshowsthattheenormousIEA. All rights reserved.4 International Energy Agency | Special Report challengeoft

16、ransformingourenergysystemsisalsoahugeopportunityforoureconomies,withthepotentialtocreatemillionsofnewjobsandboosteconomicgrowth.AnotherguidingprincipleoftheRoadmapisthatcleanenergytransitionsmustbefairandinclusive,leavingnobodybehind.Wehavetoensurethatdevelopingeconomiesreceivethefinancingandtechno

17、logicalknowhowtheyneedtocontinuebuildingtheirenergysystemstomeettheneedsoftheirexpandingpopulationsandeconomiesinasustainableway.Itisamoralimperativetobringelectricitytothehundredsofmillionsofpeoplewhocurrentlyaredeprivedofaccesstoit,themajorityinoftheminAfrica.Thetransitiontonetzeroisforandaboutpeo

18、ple.Itisparamounttoremainawarethatnoteveryworkerinthefossilfuelindustrycaneaseintoacleanenergyjob,sogovernmentsneedtopromotetraininganddevoteresourcestofacilitatingnewopportunities.Citizensmustbeactiveparticipantsintheentireprocess,makingthemfeelpartofthetransitionandnot simply subject to it. These

19、themes are among those being explored by the GlobalCommissiononPeopleCentredCleanEnergyTransitions,whichIconvenedatthestartof2021toexaminehowtoenablecitizenstobenefitfromtheopportunitiesandnavigatethe disruptions of the shift to a clean energy economy. Headed by Prime MinisterMetteFrederiksen of Den

20、mark and composed of government leaders, ministers andprominentthinkers,theGlobalCommissionwillmakepublicitskeyrecommendationsaheadofCOP26inNovember.ThepathwaylaidoutinourRoadmapisglobalinscope,buteachcountrywillneedtodesignitsownstrategy,takingintoaccountitsspecificcircumstances.Thereisnoonesizefit

21、sallapproachtocleanenergytransitions.Plansneedtoreflectcountriesdifferingstagesofeconomic development: in our pathway, advanced economies reach net zero beforedevelopingeconomiesdo.Astheworldsleadingenergyauthority,theIEAstandsreadytoprovidegovernmentswithsupportandadviceastheydesignandimplementthei

22、rownroadmaps,andtoencouragetheinternationalcooperationacrosssectorsthatissoessentialtoreachingnetzeroby2050.ThislandmarkreportwouldnothavebeenpossiblewithouttheextraordinarydedicationoftheIEAcolleagueswhohaveworkedsotirelesslyandrigorouslyonit.Iwouldliketothankthe entire team under the outstanding l

23、eadership of my colleagues LauraCozzi andTimurGl.Theworldhasahugechallengeaheadofittomovenetzeroby2050fromanarrowpossibilitytoapracticalreality.Globalcarbondioxideemissionsarealreadyreboundingsharplyaseconomiesrecoverfromlastyearspandemicinducedshock.Itispasttimeforgovernmentstoact,andactdecisivelyt

24、oacceleratethecleanenergytransformation.Asthisreportshows,weattheIEAarefullycommittedtoleadingthoseefforts.DrFatihBirolExecutiveDirectorInternationalEnergyAgencyAcknowledgements 5 AcknowledgementsThisstudy,acrossagencyeffort,waspreparedbytheWorldEnergyOutlookteamandtheEnergyTechnologyPerspectivestea

25、m.ThestudywasdesignedanddirectedbyLauraCozzi,ChiefEnergyModellerandHeadofDivisionforEnergyDemandOutlook,andTimurGl,HeadofDivisionforEnergyTechnologyPolicy.Theleadauthorsandcoordinatorswere:StphanieBouckaert,AraceliFernandezPales,ChristopheMcGlade, UweRemme and BrentWanner. LaszloVarro, Chief Economi

26、st,DavideDAmbrosioandThomasSpencerwerealsopartofthecoreteam.Theothermainauthorswere:ThibautAbergel(buildings),YasmineArsalane(economicoutlook,electricity),PraveenBains(biofuels),JoseMiguelBermudezMenendez(hydrogen),ElizabethConnelly (transport), DanielCrow (behaviour), AmritaDasgupta (innovation),Ch

27、iaraDelmastro (buildings), TimothyGoodson (buildings, bioenergy), AlexandreGouy(industry),PaulHugues(industry),LillyLee(transport),PeterLevi(industry),HanaMandova (industry), ArianeMillot (buildings), PaweOlejarnik (fossil fuel supply),LeonardoPaoli (innovation, transport),FaidonPapadimoulis (data m

28、anagement),SebastianPapapanagiotou(electricitynetworks),FrancescoPavan(hydrogen),ApostolosPetropoulos (transport), RyszardPopiech (data management), LeonieStaas(behaviour,industry),JacopoTattini(transport),JacobTeter(transport),GianlucaTonolo(energyaccess),TiffanyVass(industry)andDanielWetzel(jobs).

29、Other contributors were: Lucila Arboleya Sarazola, Simon Bennett, Cyril Cassisa, ArthurContejean, Musa Erdogan, Enrique Gutierrez Tavarez, Taku Hasegawa, Shai Hassid, ZoeHungerford, TaeYoon Kim, Vanessa Koh, Luca Lo Re, Christopher Lowans, RaimundMalischek,MariachiaraPolisenaandPerAndersWidell.Carol

30、ineAbettan,TeresaCoon,MarinaDosSantos,MarieFournierSniehotta,RekaKoczkaandDianaLouisprovidedessentialsupport.EdmundHoskercarriededitorialresponsibilityandDebraJustuswasthecopyeditor.TheInternationalMonetaryFund(IMF),inparticularBenjaminHunt,FlorenceJaumotte,JaredThomasBebee and SusannaMursula, partn

31、ered with the IEA to provide themacroeconomicanalysis.TheInternationalInstituteforAppliedSystemsAnalysis(IIASA),inparticularPeterRafaj,GregorKiesewetter,WolfgangSchpp,ChrisHeyes,ZbigniewKlimont,PallavPurohit,LauraWarnecke,BinhNguyen,NicklasForsell,StefanFrank,PetrHavlikandMykolaGusti, partnered with

32、 the IEA to provide analysis and related indicators on airpollutionandgreenhousegasemissionsfromlanduse.Valuable comments and feedback were provided by other senior management andnumerous other colleagues within the International Energy Agency. In particularKeisukeSadamori, MechthildWrsdrfer, AmosBr

33、omhead, DanDorner, NickJohnstone,PascalLaffont,TorilBosoni,PeterFraser,PaoloFrankl,TimGould,TomHowes,BrianMotherway,AadvanBohemen,CsarAlejandroHernndez,SamanthaMcCulloch,SaraMoarif,HeymiBahar,AdamBaylinStern,NielsBerghout,SaraBudinis,JeanBaptisteDubreuil,CarlosFernndezAlvarez,IlkkaHannula,JeremyMoor

34、houseandStefanLorenczik.IEA. All rights reserved.6 International Energy Agency | Special Report Valuableinputtotheanalysiswasprovidedby:TrevorMorgan(independentconsultant)andDavidWilkinson(independentconsultant).ThanksgototheIEACommunicationsandDigitalOffice(CDO),particularlytoJadMouawad,HeadofCDO,a

35、ndtoAstridDumond,JonCuster,TanyaDyhin,MerveErdil,GraceGordon,ChristopherGully,JethroMullen,JuliePuech,RobStone,GregoryViscusi,ThereseWalshandWonjikYangfortheirhelpinproducingandpromotingthereportandwebsitematerials.Finally,thankstoIvoLetraoftheIEAInformationSystemsUnitforhisessentialsupportintheprod

36、uctionprocess,andtotheIEAsOfficeofLegalCounsel,OfficeofManagementandAdministration,andEnergyDataCentrefortheassistanceeachprovidedthroughoutthepreparationofthisreport.PeerreviewersManyseniorgovernmentofficialsandinternationalexpertsprovidedinputandreviewedpreliminarydraftsofthereport.Theircommentsan

37、dsuggestionswereofgreatvalue.Theyinclude:AimeeAguilarJaberOrganisationforEconomicCooperationandDevelopment(OECD)KeigoAkimotoResearchInstituteofInnovativeTechnologyfortheEarth,JapanDougArentNationalRenewableEnergyLaboratory(NREL),UnitedStatesDanielBalogPermanentDelegationofHungarytotheOECDGeorgBumlVo

38、lkswagenHarmeetBawaHitachiABBPowerGridsPeteBettsGranthamResearchInstituteonClimateChangeandtheEnvironment,UnitedKingdomSamaBilbaoyLeonWorldNuclearAssociationDianeCameronNuclearEnergyAgencyRebeccaCollyerEuropeanClimateFoundationRussellConklinUSDepartmentofEnergyFranoisDassaEDFJeltedeJongMinistryofEco

39、nomicAffairsandClimatePolicy,TheNetherlandsCarldeMarArcelorMittalGuillaumeDeSmedtAirLiquideAgustinDelgadoIberdrolaJohannaFiksdahlPermanentDelegationofNorwaytotheOECDAlanFinkelSpecialAdvisortotheAustralianGovernmentonLowEmissionsTechnologyNiklasForsellInternationalInstituteforAppliedSystemsAnalysis(I

40、IASA)JamesFosterUKDepartmentforBusiness,EnergyandIndustrialStrategyHiroyukiFukuiToyotaRosannaFuscoEniLiGaoMinistryofEcologyandEnvironmentofthePeoplesRepublicofChinaAcknowledgements 7 FranoisGautierPermanentDelegationofFrancetotheOECDOliverGedenGermanInstituteforInternationalandSecurityAffairsDolfGie

41、lenInternationalRenewableEnergyAgency(IRENA)FrancescaGostinelliEnelJaeH.JungMinistryofForeignAffairs,RepublicofKoreaMichaelHackethalMinistryforEconomicAffairsandIndustry,GermanyPeterWoodShellSelwinHartUnitedNationsDavidHawkingsNaturalResourcesDefenseCouncilJacobHerbersUSDepartmentofEnergyTakashiHong

42、oMitsui&Co.GlobalStrategicStudiesInstitute,JapanChristinaHoodCompassClimate,NewZealandMichaelKellyWorldLPGAssociationSirDavidKingCambridgeUniversityKenKoyamaTheInstituteofEnergyEconomics,JapanFabienKreuzerDGEnergy,EuropeanCommissionJoyceLeeGlobalWindEnergyCouncil(GWEC)ChenLinhaoMinistryofScienceandT

43、echnologyofthePeoplesRepublicofChinaToddLitmanVictoriaTransportPolicyInstitute,CanadaClaudeLoreaGlobalCementandConcreteAssociationRituMathurTheEnergyandResourcesInstitute(TERI)VincentMinierSchneiderElectricSteveNadelAmericanCouncilforanEnergyEfficientEconomyStefanNowakTechnologyCollaborationProgramm

44、eonPhotovoltaicPowerSystems(PVPSTCP)BrianGallachirMaREI,SFIResearchCentreforEnergy,ClimateandMarine,UniversityCollegeCorkHenriPaillreInternationalAtomicEnergyAgency(IAEA)YongdukPakKoreaEnergyEconomicsInstitute(KEEI)AlessandraPastorelliPermanentDelegationofItalytotheOECDJonathanPershingUSStateDepartm

45、entGlenPetersCentreforInternationalClimateandEnvironmentalResearch(CICERO)StephaniePfeiferInstitutionalInvestorsGrouponClimateChange(IIGCC)CdricPhilibertIndependentconsultantLynnPriceLawrenceBerkeleyNationalLaboratory,UnitedStatesAndrewPurvisWorldSteelJuliaReinaudBreakthroughEnergyYaminaSahebOpenEXP

46、IgnacioSantelicesSustainableEnergyAgency,ChileAndreasSchferUniversityCollegeLondonVivianScottTheUniversityofEdinburgh8 International Energy Agency | Special ReportSimonSharpeCabinetOffice,UnitedKingdomAdnanShihabEldinFormerlyKuwaitFoundationfortheAdvancementofSciencesToshiyukiShiraiMinistryofEconomy

47、,TradeandIndustry,JapanAdamSieminskiKAPSARCStephanSingerClimateActionNetworkVarunSivaramUSStateDepartmentJimSkeaImperialCollegeLondonJeffStehmTaskForceonClimateRelatedFinancialDisclosuresJonathanSternOxfordInstituteforEnergyStudiesWimThomasIndependentconsultantDavidTurkUSDepartmentofEnergyFritjofUna

48、nderResearchCouncilofNorwayRobvanderMeerTheEuropeanCementAssociation(CEMBUREAU)NovanHulstInternationalPartnershipforHydrogenandFuelCellsintheEconomyTomvanIerlandDGforClimateAction,EuropeanCommissionDavidVictorUniversityofCalifornia,SanDiegoAmandaWilsonNaturalResourcesCanadaHaraldWinklerUniversityofC

49、apeTownMarkusWolfElectricPowerResearchInstitute(EPRI),UnitedStatesMarkusWrkeSwedishEnergyResearchCentreWilliamZimmernBPTheindividualsandorganisationsthatcontributedtothisstudyarenotresponsibleforanyopinionsorjudgmentsitcontains.AllerrorsandomissionsaresolelytheresponsibilityoftheIEA.Thisdocumentanda

50、nymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Commentsandquestionsarewelcomeandshouldbeaddressedto:LauraCozziandTimurGlDirectorateofSustainability,TechnologyandOutlooksInter

51、nationalEnergyAgency9,ruedelaFdration75739ParisCedex15FranceEmail:IEANZE2050iea.orgWeb:www.iea.orgTable of Contents 9 TableofContentsForeword.3Acknowledgements.5Executivesummary.13Announcednetzeropledgesandtheenergysector291.1 Introduction .301.2 Emissionsreductiontargetsandnetzeropledges.311.2.1 Na

52、tionallyDeterminedContributions.311.2.2 Netzeroemissionspledges.321.3 OutlookforemissionsandenergyintheSTEPS.361.3.1 CO2emissions.361.3.2 Totalenergysupply,totalfinalconsumptionandelectricitygeneration.371.3.3 Emissionsfromexistingassets.391.4 AnnouncedPledgesCase .401.4.1 CO2emissions.411.4.2 Total

53、energysupply.431.4.3 Totalfinalconsumption.441.4.4 Electricitygeneration .45AglobalpathwaytonetzeroCOemissionsin2050472.1 Introduction .482.2 Scenariodesign .482.2.1 PopulationandGDP .502.2.2 EnergyandCO2prices .512.3 CO2emissions.532.4 Totalenergysupplyandtotalfinalconsumption.562.4.1 Totalenergysu

54、pply.562.4.2 Totalfinalconsumption.602.5 Keypillarsofdecarbonisation.642.5.1 Energyefficiency .652.5.2 Behaviouralchange.672.5.3 Electrification.7012IEA. All rights reserved.10 International Energy Agency | Special Report 2.5.4 Renewables.732.5.5 Hydrogenandhydrogenbasedfuels .752.5.6 Bioenergy.772.

55、5.7 Carboncapture,utilisationandstorage.792.6 Investment.812.7 Keyuncertainties.832.7.1 Behaviouralchange.842.7.2 Bioenergyandlandusechange .902.7.3 CCUSappliedtoemissionsfromfossilfuels.94Sectoralpathwaystonetzeroemissionsby2050993.1 Introduction .1003.2 Fossilfuelsupply.1003.2.1 EnergytrendsintheN

56、etZeroEmissionsScenario.1003.2.2 Investmentinoilandgas.1033.2.3 Emissionsfromfossilfuelproduction .1043.3 Lowemissionsfuelsupply.1053.3.1 EnergytrendsintheNetZeroEmissionsScenario.1053.3.2 Biofuels.1063.3.3 Hydrogenandhydrogenbasedfuels .1083.3.4 Keymilestonesanddecisionpoints .1113.4 Electricitysec

57、tor.1133.4.1 EnergyandemissionstrendsintheNetZeroEmissionsScenario.1133.4.2 Keymilestonesanddecisionpoints .1173.5 Industry.1213.5.1 EnergyandemissiontrendsintheNetZeroEmissionsScenario.1213.5.2 Keymilestonesanddecisionpoints .1293.6 Transport.1313.6.1 EnergyandemissiontrendsintheNetZeroEmissionsSce

58、nario.1313.6.2 Keymilestonesanddecisionpoints .1383.7 Buildings.1413.7.1 EnergyandemissiontrendsintheNetZeroEmissionsScenario.1413.7.2 Keymilestonesanddecisionpoints .1473Table of Contents 11 Widerimplicationsofachievingnetzeroemissions1514.1 Introduction .1524.2 Economy.1534.2.1 Investmentandfinanc

59、ing.1534.2.2 Economicactivity.1554.2.3 Employment.1574.3 Energyindustry .1604.3.1 Oilandgas.1604.3.2 Coal.1624.3.3 Electricity.1634.3.4 Energyconsumingindustries.1654.4 Citizens.1674.4.1 EnergyrelatedSustainableDevelopmentGoals.1674.4.2 Affordability.1704.4.3 Behaviouralchanges.1734.5 Governments.17

60、54.5.1 Energysecurity.1754.5.2 Infrastructure .1804.5.3 Taxrevenuesfromretailenergysales.1834.5.4 Innovation .1844.5.5 Internationalcooperation.187Annexes191AnnexA.Tablesforscenarioprojections.193AnnexB.Technologycosts.201AnnexC.Definitions.203AnnexD.References.2174IEA. All rights reserved.Summary f

61、or policy makers 13 SummaryforpolicymakersTheenergysectoristhesourceofaroundthreequartersofgreenhousegasemissionstodayandholdsthekeytoavertingtheworsteffectsofclimatechange,perhapsthegreatestchallengehumankindhasfaced.Reducingglobalcarbondioxide(CO2)emissionstonetzeroby2050isconsistentwitheffortstol

62、imitthelongtermincreaseinaverageglobaltemperaturesto1.5C.Thiscallsfornothinglessthanacompletetransformationofhowweproduce,transportandconsumeenergy.Thegrowingpoliticalconsensusonreachingnetzeroiscauseforconsiderableoptimismabouttheprogresstheworldcanmake,butthechangesrequiredtoreachnetzeroemissionsg

63、loballyby2050arepoorlyunderstood.Ahugeamountofworkisneededtoturntodaysimpressiveambitionsintoreality,especiallygiventherangeofdifferentsituationsamongcountriesandtheirdifferingcapacitiestomakethenecessarychanges.ThisspecialIEAreportsetsoutapathwayforachievingthisgoal,resultinginacleanandresilientene

64、rgysystemthatwouldbringmajorbenefitsforhumanprosperityandwellbeing.Theglobalpathwaytonetzeroemissionsby2050detailedinthisreportrequiresallgovernmentstosignificantlystrengthenandthensuccessfullyimplementtheirenergyandclimatepolicies.Commitmentsmadetodatefallfarshortofwhatisrequiredbythatpathway.Thenu

65、mberofcountriesthathavepledgedtoachievenetzeroemissionshasgrownrapidlyoverthelastyearandnowcoversaround70%ofglobalemissionsofCO2.Thisisahugestepforward.However,mostpledgesarenotyetunderpinnedbyneartermpoliciesandmeasures.Moreover,evenifsuccessfullyfulfilled,thepledgestodatewouldstillleavearound22bil

66、liontonnesofCO2emissionsworldwidein2050.Thecontinuationofthattrendwouldbeconsistentwithatemperaturerisein2100ofaround2.1C.Globalemissionsfellin2020becauseoftheCovid19crisisbutarealreadyreboundingstronglyaseconomiesrecover.Furtherdelayinactingtoreversethattrendwillputnetzeroby2050outofreach.InthisSum

67、maryforPolicyMakers,weoutlinetheessentialconditionsfortheglobalenergysectortoreachnetzeroCO2emissionsby2050.Thepathwaydescribedindepthinthisreportachievesthisobjectivewithnooffsetsfromoutsidetheenergysector,andwithlowrelianceonnegativeemissionstechnologies.Itisdesignedtomaximisetechnicalfeasibility,

68、costeffectivenessandsocialacceptancewhileensuringcontinuedeconomicgrowthandsecureenergysupplies.Wehighlightthepriorityactionsthatareneededtodaytoensuretheopportunityofnetzeroby2050narrowbutstillachievableisnotlost.Thereportprovidesaglobalview,butcountriesdonotstartinthesameplaceorfinishatthesametime

69、:advanced economies have to reach net zero before emerging markets and developingeconomies,andassistothersingettingthere.Wealsorecognisethattheroutemappedouthereisapath,notnecessarilythepath,andsoweexaminesomekeyuncertainties,notablyconcerningtherolesplayedbybioenergy,carboncaptureandbehaviouralchan

70、ges.Gettingtonetzerowillinvolvecountlessdecisionsbypeopleacrosstheworld,butourprimaryaimistoinformthedecisionsmadebypolicymakers,whohavethegreatestscopetomovetheworldclosertoitsclimategoals.IEA. All rights reserved.14 International Energy Agency | Special Report Netzeroby2050hingesonanunprecedentedc

71、leantechnologypushto2030Thepathtonetzeroemissionsisnarrow:stayingonitrequiresimmediateandmassivedeployment of all available clean and efficient energy technologies. In the netzeroemissionspathwaypresentedinthisreport,theworldeconomyin2030issome40%largerthantodaybutuses7%lessenergy.Amajorworldwidepus

72、htoincreaseenergyefficiencyisan essential part of these efforts, resulting in the annual rate of energy intensityimprovementsaveraging4%to2030aboutthreetimestheaveragerateachievedoverthelasttwodecades.EmissionsreductionsfromtheenergysectorarenotlimitedtoCO2:inourpathway,methaneemissionsfromfossilfue

73、lsupplyfallby75%overthenexttenyearsasaresult of a global, concerted effort to deploy all available abatement measures andtechnologies.Evercheaperrenewableenergytechnologiesgiveelectricitytheedgeintheracetozero.Ourpathwaycallsforscalingupsolarandwindrapidlythisdecade,reachingannualadditionsof630gigaw

74、atts(GW)ofsolarphotovoltaics(PV)and390GWofwindby2030,fourtimestherecordlevelssetin2020.ForsolarPV,thisisequivalenttoinstallingtheworldscurrentlargestsolarparkroughlyeveryday.Hydropowerandnuclear,thetwolargestsourcesoflowcarbon electricity today, provide an essential foundation for transitions. As th

75、eelectricitysectorbecomescleaner,electrificationemergesasacrucialeconomywidetoolforreducingemissions.Electricvehicles(EVs)gofromaround5%ofglobalcarsalestomorethan60%by2030.Make the 2020s the decade of massive clean energy expansion Allthetechnologiesneededtoachievethenecessarydeepcutsinglobalemissio

76、nsby2030alreadyexist,andthepoliciesthatcandrivetheirdeploymentarealreadyproven.AstheworldcontinuestograpplewiththeimpactsoftheCovid19pandemic,itisessential that the resulting wave of investment and spending to support economicrecoveryisalignedwiththenetzeropathway.Policiesshouldbestrengthenedtospeed

77、thedeploymentofcleanandefficientenergytechnologies.Mandatesandstandardsarevital to drive consumer spending and industry investment into the most efficienttechnologies.Targetsandcompetitiveauctionscanenablewindandsolartoacceleratetheelectricitysectortransition.Fossilfuelsubsidyphaseouts,carbonpricing

78、andothermarketreformscanensureappropriatepricesignals.Policiesshouldlimitorprovidedisincentivesfortheuseofcertainfuelsandtechnologies,suchasunabatedcoalfiredpower stations, gas boilers and conventional internal combustion engine vehicles.Governmentsmustleadtheplanningandincentivisingofthemassiveinfr

79、astructureinvestment,includinginsmarttransmissionanddistributiongrids.P R I O R I T Y A C T I O NSummary for policy makers 15 Key clean technologies ramp up by 2030 in the net zero pathway Note:MJ=megajoules;GDP=grossdomesticproductinpurchasingpowerparity.Netzeroby2050requireshugeleapsincleanenergyi

80、nnovationReachingnetzeroby2050requiresfurtherrapiddeploymentofavailabletechnologiesaswellaswidespreaduseoftechnologiesthatarenotonthemarketyet.Majorinnovationeffortsmustoccuroverthisdecadeinordertobringthesenewtechnologiestomarketintime.MostoftheglobalreductionsinCO2emissionsthrough2030inourpathwayc

81、omefromtechnologiesreadilyavailabletoday.Butin2050,almosthalfthereductionscomefromtechnologiesthatarecurrentlyatthedemonstrationorprototypephase.Inheavyindustryandlongdistancetransport,theshareofemissionsreductionsfromtechnologiesthatarestillunderdevelopmenttodayisevenhigher.Thebiggestinnovationoppo

82、rtunitiesconcernadvancedbatteries,hydrogenelectrolysers,anddirectaircaptureandstorage.Together,thesethreetechnologyareasmakevitalcontributionsthereductionsinCO2emissionsbetween2030and2050inourpathway.Innovationoverthenexttenyearsnotonlythroughresearchanddevelopment(R&D)anddemonstrationbutalsothrough

83、deploymentneedstobeaccompaniedbythelargescaleconstructionoftheinfrastructurethetechnologieswillneed.ThisincludesnewpipelinestotransportcapturedCO2emissionsandsystemstomovehydrogenaroundandbetweenportsandindustrialzones.020202030x80002030x4SolarPVWindCapacityadditions

84、(GW)Electriccarsales(millions)Energy intensityofGDP(MJperUSDppp)304% peryearIEA. All rights reserved.16 International Energy Agency | Special Report Prepare for the next phase of the transition by boosting innovation Clean energy innovation must accelerate rapidly, with governments puttin

85、g R&D,demonstrationanddeploymentatthecoreofenergyandclimatepolicy.GovernmentR&Dspendingneedstobeincreasedandreprioritised.Criticalareassuchaselectrification,hydrogen,bioenergyandcarboncapture,utilisationandstorage(CCUS)todayreceiveonlyaroundonethirdofthelevelofpublicR&Dfundingofthemoreestablished lo

86、wcarbon electricity generation and energy efficiency technologies.Supportisalsoneededtoacceleratetherolloutofdemonstrationprojects,toleverageprivateinvestmentinR&D,andtoboostoveralldeploymentlevelstohelpreducecosts.AroundUSD90billionofpublicmoneyneedstobemobilisedgloballyassoonaspossibletocompleteap

87、ortfolioofdemonstrationprojectsbefore2030.Currently,onlyroughlyUSD25billionisbudgetedforthatperiod.Developinganddeployingthesetechnologieswould create major new industries, as well as commercial and employmentopportunities.Annual CO2 emissions savings in the net zero pathway, relative to 2020 20%40%

88、60%80%100%20302050BehaviourchangesTechnologiesinthemarketTechnologiesunderdevelopmentP R I O R I T Y A C T I O NSummary for policy makers 17 ThetransitiontonetzeroisforandaboutpeopleAtransitionofthescaleandspeeddescribedbythenetzeropathwaycannotbeachievedwithoutsustainedsupportandparticipationfromci

89、tizens.Thechangeswillaffectmultipleaspectsofpeopleslivesfromtransport,heatingandcookingtourbanplanningandjobs.Weestimatethataround55%ofthecumulativeemissionsreductionsinthepathwayarelinkedtoconsumerchoicessuchaspurchasinganEV,retrofittingahousewithenergyefficient technologies or installing a heat pu

90、mp. Behavioural changes, particularly inadvancedeconomiessuchasreplacingcartripswithwalking,cyclingorpublictransport,or foregoing a longhaul flight also provide around 4% of the cumulative emissionsreductions.Providingelectricitytoaround785millionpeoplethathavenoaccessandcleancookingsolutionsto2.6bi

91、llionpeoplethatlackthoseoptionsisanintegralpartofourpathway.Emissionsreductionshavetogohandinhandwitheffortstoensureenergyaccessforallby2030.ThiscostsaroundUSD40billionayear,equaltoaround1%ofaverageannualenergysectorinvestment,whilealsobringingmajorcobenefitsfromreducedindoorairpollution.Someofthech

92、angesbroughtbythecleanenergytransformationmaybechallengingtoimplement,sodecisionsmustbetransparent,justandcosteffective.Governmentsneedtoensurethatcleanenergytransitionsarepeoplecentredandinclusive.Householdenergyexpenditureasashareofdisposableincomeincludingpurchasesofefficientappliancesandfuelbill

93、srisesmodestlyinemergingmarketanddevelopingeconomiesinournetzeropathwayasmorepeoplegainaccesstoenergyanddemandformodernenergyservicesincreases rapidly. Ensuring the affordability of energy for households demands closeattention:policytoolsthatcandirectsupporttothepoorestincludetaxcredits,loansandtarg

94、etedsubsidies.Clean energy jobs will grow strongly but must be spread widely Energy transitions have to take account of the social and economic impacts onindividualsandcommunities,andtreatpeopleasactiveparticipants.Thetransitiontonetzerobringssubstantialnewopportunitiesforemployment,with14millionjob

95、screatedby2030inourpathwaythankstonewactivitiesandinvestmentincleanenergy.Spendingonmoreefficientappliances,electricandfuelcellvehicles,andbuildingretrofitsandenergyefficientconstructionwouldrequireafurther16millionworkers.Buttheseopportunitiesareoftenindifferentlocations,skillsetsandsectorsthanthej

96、obsthatwillbelostasfossilfuelsdecline.Inourpathway,around5millionjobsarelost.Mostofthosejobsarelocatedclosetofossilfuelresources,andmanyarewellpaid,meaningstructuralchangescancauseshocksforcommunitieswithimpactsthatpersistovertime.ThisrequirescarefulpolicyattentiontoaddresstheemploymentP R I O R I T

97、 Y A C T I O NIEA. All rights reserved.18 International Energy Agency | Special Report losses.Itwillbevitaltominimisehardshipsassociatedwiththesedisruptions,suchasbyretrainingworkers,locatingnewcleanenergyfacilitiesinheavilyaffectedareaswhereverpossible,andprovidingregionalaid.Global employment in e

98、nergy supply in the net zero pathway, 2019-2030 AnenergysectordominatedbyrenewablesInthenetzeropathway,globalenergydemandin2050isaround8%smallerthantoday,butitservesaneconomymorethantwiceasbigandapopulationwith2billionmorepeople.Moreefficientuseofenergy,resourceefficiencyandbehaviouralchangescombine

99、tooffsetincreasesindemandforenergyservicesastheworldeconomygrowsandaccesstoenergyisextendedtoall.Insteadoffossilfuels,theenergysectorisbasedlargelyonrenewableenergy.Twothirdsoftotalenergysupplyin2050isfromwind,solar,bioenergy,geothermalandhydroenergy.Solarbecomesthelargestsource,accountingforonefift

100、hofenergysupplies.SolarPVcapacityincreases20foldbetweennowand2050,andwindpower11fold.Netzeromeansahugedeclineintheuseoffossilfuels.Theyfallfromalmostfourfifthsoftotalenergysupplytodaytoslightlyoveronefifthby2050.Fossilfuelsthatremainin2050areusedingoodswherethecarbonisembodiedintheproductsuchasplast

101、ics,infacilitiesfittedwithCCUS,andinsectorswherelowemissionstechnologyoptionsarescarce.Electricityaccountsforalmost50%oftotalenergyconsumptionin2050.Itplaysakeyroleacrossallsectorsfromtransportandbuildingstoindustryandisessentialtoproducelowemissionsfuelssuchashydrogen.Toachievethis,totalelectricity

102、generationincreasesover20406020192030MillionjobsBioenergyElectricityCoalOilandgasLossesGrowthSummary for policy makers 19 twoandahalftimesbetweentodayand2050.Atthesametime,noadditionalnewfinalinvestmentdecisionsshouldbetakenfornewunabatedcoalplants,theleastefficientcoalplants are phased out by 2030,

103、 and the remaining coal plants still in use by 2040 areretrofitted.By2050,almost90%ofelectricitygenerationcomesfromrenewablesources,withwindandsolarPVtogetheraccountingfornearly70%.Mostoftheremaindercomesfromnuclear.Emissionsfromindustry,transportandbuildingstakelongertoreduce.Cuttingindustryemissio

104、nsby95%by2050involvesmajoreffortstobuildnewinfrastructure.AfterrapidinnovationprogressthroughR&D,demonstrationandinitialdeploymentbetweennowand2030tobringnewcleantechnologiestomarket,theworldthenhastoputthemintoaction.Everymonthfrom2030onwards,tenheavyindustrialplantsareequippedwithCCUS,threenewhydr

105、ogenbasedindustrialplantsarebuilt,and2GWofelectrolysercapacityareaddedatindustrialsites.Policiesthatendsalesofnewinternalcombustionenginecarsby2035andboostelectrificationunderpinthemassivereductionintransportemissions.In2050,carsontheroadworldwiderunonelectricityorfuelcells.Lowemissionsfuelsareessen

106、tialwhereenergyneedscannoteasilyoreconomicallybemetbyelectricity.Forexample,aviationrelieslargelyonbiofuelsandsyntheticfuels,andammoniaisvitalforshipping.Inbuildings,bansonnewfossilfuelboilersneedtostartbeingintroducedgloballyin2025,drivingupsalesofelectricheatpumps.Mostoldbuildingsandallnewonescomp

107、lywithzerocarbonreadybuildingenergycodes.1Set near-term milestones to get on track for long-term targets Governmentsneedtoprovidecrediblestepbystepplanstoreachtheirnetzerogoals,buildingconfidenceamonginvestors,industry,citizensandothercountries.Governmentsmustputinplacelongtermpolicyframeworkstoallo

108、wallbranchesofgovernmentandstakeholderstoplanforchangeandfacilitateanorderlytransition.Longtermnationallowemissionsstrategies,calledforbytheParisAgreement,cansetoutavisionfornationaltransitions,asthisreporthasdoneonagloballevel.Theselongtermobjectivesneedtobelinkedtomeasurableshorttermtargetsandpoli

109、cies.Ourpathwaydetailsmorethan400sectoralandtechnologymilestonestoguidetheglobaljourneytonetzeroby2050.1Azerocarbonreadybuildingishighlyenergyefficientandeitherusesrenewableenergydirectlyorusesanenergysupplythatwillbefullydecarbonisedby2050,suchaselectricityordistrictheat.P R I O R I T Y A C T I O N

110、IEA. All rights reserved.20 International Energy Agency | Special ReportKey milestones in the pathway to net zero 5055402020202520302035204020452050GtCOBuildingsTransportIndustryElectricityandheatOther2045150 Mtlowcarbonhydrogen850GWelectrolysers435Mtlowcarbonhydrogen3000GWelectrolysers4G

111、tCO2capturedPhaseoutofunabatedcoalinadvancedeconomies2030Universalenergyaccess60%ofglobalcarsalesareelectric1020GWannualsolarandwindadditionsAllnewbuildingsarezerocarbonreadyMostnewcleantechnologiesinheavyindustrydemonstratedatscaleAllindustrialelectricmotorsalesarebestinclassNonewICEcarsales2035Ove

112、rallnetzeroemissionselectricityinadvancedeconomiesMostappliancesandcoolingsystemssoldarebestinclass50%ofheavytrucksalesareelectric7.6GtCO2capturedNonewunabatedcoalplantsapprovedfordevelopment20212025Nonewsalesoffossilfuelboilers2040Morethan90%ofheavyindustrialproductionislowemissions2050Almost70%ofe

113、lectricitygenerationgloballyfromsolarPVandwindMorethan85%ofbuildingsarezerocarbonready50%ofheatingdemandmetbyheatpumpsPhaseoutofallunabatedcoalandoilpowerplantsNetzeroemissionselectricityglobally50%offuelsusedinaviationarelowemissionsAround90%ofexistingcapacityinheavyindustriesreachesendofinvestment

114、cycle50%ofexistingbuildingsretrofittedtozerocarbonreadylevelsNonewoilandgasfieldsapprovedfordevelopment;nonewcoalminesormineextensionsSummary for policy makers 21 ThereisnoneedforinvestmentinnewfossilfuelsupplyinournetzeropathwayBeyond projects already committed as of 2021, there are no new oil and

115、gas fieldsapprovedfordevelopmentinourpathway,andnonewcoalminesormineextensionsarerequired.Theunwaveringpolicyfocusonclimatechangeinthenetzeropathwayresultsinasharpdeclineinfossilfueldemand,meaningthatthefocusforoilandgasproducersswitchesentirelytooutputandemissionsreductionsfromtheoperationofexistin

116、gassets.Unabatedcoaldemanddeclinesby90%tojust1%oftotalenergyusein2050.Gasdemanddeclinesby55%to1750billioncubicmetresandoildeclinesby75%to24millionbarrelsperday(mb/d),fromaround90mb/din2020.Cleanelectricitygeneration,networkinfrastructureandendusesectorsarekeyareasforincreasedinvestment.Enablinginfra

117、structureandtechnologiesarevitalfortransformingtheenergysystem.AnnualinvestmentintransmissionanddistributiongridsexpandsfromUSD260billiontodaytoUSD820billionin2030.ThenumberofpublicchargingpointsforEVsrisesfromaround1milliontodayto40millionin2030,requiringannualinvestmentofalmostUSD90billionin2030.A

118、nnualbatteryproductionforEVsleapsfrom160gigawatthours(GWh)todayto6600GWhin2030theequivalentofaddingalmost20gigafactories2eachyearforthenexttenyears.AndtherequiredrolloutofhydrogenandCCUSafter2030means laying the groundwork now: annual investment in CO2 pipelines and hydrogenenablinginfrastructureinc

119、reasesfromUSD1billiontodaytoaroundUSD40billionin2030.Drive a historic surge in clean energy investment Policiesneedtobedesignedtosendmarketsignalsthatunlocknewbusinessmodelsandmobiliseprivatespending,especiallyinemergingeconomies.Accelerateddeliveryofinternationalpublicfinancewillbecriticaltoenergyt

120、ransitions,especiallyindevelopingeconomies,butultimatelytheprivatesectorwillneedtofinancemost of the extra investment required. Mobilising the capital for largescaleinfrastructure calls for closer cooperation between developers, investors, publicfinancialinstitutionsandgovernments.Reducingrisksforin

121、vestorswillbeessentialtoensuresuccessfulandaffordablecleanenergytransitions.Manyemergingmarketanddevelopingeconomies,whichrelymainlyonpublicfundingfornewenergyprojectsandindustrialfacilities,willneedtoreformtheirpolicyandregulatoryframeworkstoattractmoreprivatefinance.Internationalflowsoflongtermcap

122、italtotheseeconomieswillbeneeded to support the development of both existing and emerging clean energytechnologies.2Batterygigafactorycapacityassumption=35gigawatthoursperyear.P R I O R I T Y A C T I O NIEA. All rights reserved.22 International Energy Agency | Special Report Clean energy investment

123、in the net zero pathway AnunparalleledcleanenergyinvestmentboomliftsglobaleconomicgrowthTotal annual energy investment surges to USD 5 trillion by 2030, adding an extra0.4percentagepointayeartoannualglobalGDPgrowth,basedonourjointanalysiswiththeInternationalMonetaryFund.Thisunparalleledincreasewithi

124、nvestmentincleanenergyandenergyinfrastructuremorethantriplingalreadyby2030bringssignificanteconomicbenefitsastheworldemergesfromtheCovid19crisis.Thejumpinprivateandgovernmentspendingcreatesmillionsofjobsincleanenergy,includingenergyefficiency,aswellasintheengineering,manufacturingandconstructionindu

125、stries.AllofthisputsglobalGDP4%higherin2030thanitwouldbebasedoncurrenttrends.Governmentshaveakeyroleinenablinginvestmentledgrowthandensuringthatthebenefitsaresharedbyall.Therearelargedifferencesinmacroeconomicimpactsbetweenregions. But government investment and public policies are essential to attra

126、ct largeamountsofprivatecapitalandtohelpoffsetthedeclinesinfossilfuelincomethatmanycountrieswillexperience.Themajorinnovationeffortsneededtobringnewcleanenergytechnologies to market could boost productivity and create entirely new industries,providingopportunitiestolocatetheminareasthatseejoblossesi

127、nincumbentindustries.Improvementsinairqualityprovidemajorhealthbenefits,with2millionfewerprematuredeathsgloballyfromairpollutionin2030thantodayinournetzeropathway.Achievinguniversalenergyaccessby2030wouldprovideamajorboosttowellbeingandproductivityindevelopingeconomies.20302050TrillionUSD

128、(2019)EnduseEnergyinfrastructureElectricitygenerationLowemissionsfuelsSummary for policy makers 23 Newenergysecurityconcernsemerge,andoldonesremainThecontractionofoilandnaturalgasproductionwillhavefarreachingimplicationsforallthecountriesandcompaniesthatproducethesefuels.Nonewoilandnaturalgasfieldsa

129、reneededinourpathway,andoilandnaturalgassuppliesbecomeincreasinglyconcentratedinasmallnumberoflowcostproducers.Foroil,theOPECshareofamuchreducedglobaloilsupplyincreasesfromaround37%inrecentyearsto52%in2050,alevelhigherthanatanypointinthehistoryofoilmarkets.Yetannualpercapitaincomefromoilandnaturalga

130、sinproducereconomiesfallsbyabout75%,fromUSD1800inrecentyearstoUSD450bythe2030s,whichcouldhaveknockonsocietaleffects.Structuralreformsandnewsourcesofrevenueareneeded,eventhoughtheseareunlikelytocompensatefullyforthedropinoilandgasincome.Whiletraditionalsupplyactivitiesdecline,theexpertiseoftheoilandn

131、aturalgasindustryfitswellwithtechnologiessuchashydrogen,CCUSandoffshorewindthatareneededtotackleemissionsinsectorswherereductionsarelikelytobemostchallenging.Theenergytransitionrequiressubstantialquantitiesofcriticalminerals,andtheirsupplyemergesasasignificantgrowtharea.Thetotalmarketsizeofcriticalm

132、ineralslikecopper,cobalt,manganeseandvariousrareearthmetalsgrowsalmostsevenfoldbetween2020and2030inthenetzeropathway.Revenuesfromthosemineralsarelargerthanrevenuesfromcoalwellbefore2030.Thiscreatessubstantialnewopportunitiesforminingcompanies.Italsocreatesnewenergysecurityconcerns,includingpricevola

133、tilityandadditionalcostsfortransitions,ifsupplycannotkeepupwithburgeoningdemand.The rapid electrification of all sectors makes electricity even more central to energysecurityaroundtheworldthanitistoday.Electricitysystemflexibilityneededtobalancewindandsolarwithevolvingdemandpatternsquadruplesby2050e

134、venasretirementsoffossilfuelcapacityreduceconventionalsourcesofflexibility.Thetransitioncallsformajorincreasesinallsourcesofflexibility:batteries,demandresponseandlowcarbonflexiblepowerplants,supportedbysmarterandmoredigitalelectricitynetworks.Theresilienceofelectricitysystemstocyberattacksandothere

135、mergingthreatsneedstobeenhanced.Address emerging energy security risks now Ensuring uninterrupted and reliable supplies of energy and critical energyrelatedcommoditiesataffordablepriceswillonlyriseinimportanceonthewaytonetzero.Thefocusofenergysecuritywillevolveasrelianceonrenewableelectricitygrowsan

136、dthe role of oil and gas diminishes. Potential vulnerabilities from the increasingimportance of electricity include the variability of supply and cybersecurity risks.Governmentsneedtocreatemarketsforinvestmentinbatteries,digitalsolutionsandelectricity grids that reward flexibility and enable adequat

137、e and reliablesupplies ofelectricity.Thegrowingdependenceoncriticalmineralsrequiredforkeycleanenergytechnologies calls for new international mechanisms to ensure both the timelyP R I O R I T Y A C T I O NIEA. All rights reserved.24 International Energy Agency | Special Report availabilityofsuppliesa

138、ndsustainableproduction.Atthesametime,traditionalenergysecurityconcernswillnotdisappear,asoilproductionwillbecomemoreconcentrated.Global energy security indicators in the net zero pathway Note:mb/d=millionbarrelsperday;Mt=milliontonnes.Internationalcooperationispivotalforachievingnetzeroemissionsby2

139、050Making netzero emissions a reality hinges on a singular, unwavering focus from allgovernmentsworkingtogetherwithoneanother,andwithbusinesses,investorsandcitizens.Allstakeholdersneedtoplaytheirpart.Thewiderangingmeasuresadoptedbygovernmentsatalllevelsinthenetzeropathwayhelptoframe,influenceandince

140、ntivisethe purchase by consumers and investment by businesses. This includes how energycompaniesinvestinnewwaysofproducingandsupplyingenergyservices,howbusinessesinvestinequipment,andhowconsumerscoolandheattheirhomes,powertheirdevicesandtravel.Underpinningallthesechangesarepolicydecisionsmadebygover

141、nments.Devisingcosteffectivenationalandregionalnetzeroroadmapsdemandscooperationamongallpartsofgovernmentthatbreaksdownsilosandintegratesenergyintoeverycountryspolicymakingonfinance,labour,taxation,transportandindustry.Energyorenvironmentministriesalonecannotcarryoutthepolicyactionsneededtoreachnetz

142、eroby2050.Changesinenergyconsumptionresultinasignificantdeclineinfossilfueltaxrevenues.Inmanycountriestoday,taxesondiesel,gasolineandotherfossilfuelconsumptionareanimportantsourceofpublicrevenues,providingasmuchas10%insomecases.Inthenetzeropathway,taxrevenuefromoilandgasretailsalesfallsbyabout40%bet

143、ween2020and2030.Managingthisdeclinewillrequirelongtermfiscalplanningandbudgetreforms.020205020%40%60%80%100%2020205020406080Oilsupply(mb/d)Shareofsolar PVandwindinelectricitygenerationCriticalmineralsdemand(Mt)52%OPECshare34%Summary for policy makers 25The net zero pathway reli

144、es on unprecedented international cooperation amonggovernments,especiallyoninnovationandinvestment.TheIEAstandsreadytosupportgovernmentsinpreparingnationalandregionalnetzeroroadmaps,toprovideguidanceandassistanceinimplementingthem,andtopromoteinternationalcooperationtoacceleratetheenergytransitionwo

145、rldwide.Take international co-operation to new heights Thisisnotsimplyamatterofallgovernmentsseekingtobringtheirnationalemissionstonetzeroitmeanstacklingglobalchallengesthroughcoordinatedactions.Governmentsmustworktogetherinaneffectiveandmutuallybeneficialmannertoimplement coherent measures that cro

146、ss borders. This includes carefully managingdomesticjobcreationandlocalcommercialadvantageswiththecollectiveglobalneedfor clean energy technology deployment. Accelerating innovation, developinginternationalstandardsandcoordinatingtoscaleupcleantechnologiesneedstobedoneinawaythatlinksnationalmarkets.

147、Cooperationmustrecognisedifferencesinthestagesofdevelopmentofdifferentcountriesandthevaryingsituationsofdifferentpartsofsociety.Formanyrichcountries,achievingnetzeroemissionswillbemoredifficultand costly without international cooperation. For many developing countries, thepathwaytonetzerowithoutinte

148、rnationalassistanceisnotclear.Technicalandfinancialsupportisneededtoensuredeploymentofkeytechnologiesandinfrastructure.Withoutgreaterinternationalcooperation,globalCO2emissionswillnotfalltonetzeroby2050.Global energy-related CO2 emissions in the net zero pathway and Low International Co-operation Ca

149、se Note:Gt=gigatonnes.02030205020702090GtCO2NZELowInternationalCooperation CaseP R I O R I T Y A C T I O NIEA. All rights reserved.Net Zero Emissions by 2050 Interactive iea.li/nzeroadmap203520202030IndustryOtherPowerTransportUnabated coal, natural gas and oil account for over 60% of tota

150、l electricity generationSolar PV and wind accounts for almost 10% of total electricity generationRetrofit rates below 1% globallyFossil fuels account for almost 80% of TES40 Mt CO2 captured5% of global car sales are electric33.9Total CO2 emissions (Gt)Buildings2.9Gt8.5Gt1.9Gt13.5Gt7.2GtFrom 2021:No

151、new oil and gas fields approved for development; no new coal mines or mine extensionsFrom 2021:No new unabated coal plants approved for developmentMost new clean technologies in heavy industry demonstrated at scale60% of global car sales are electric150 Mt low-carbon hydrogen; 850 GW electrolysersAl

152、l new buildings are zero-carbon-readyUniversalenergy access1 020 GW annualsolar and windadditionsPhase-out of unabated coal in advanced economiesIndustryOtherPowerTransportBuildings1.8Gt6.9Gt0.9Gt5.8Gt5.7Gt21.1Total CO2 emissions (Gt)All industrial electric motor sales are best in classVirtually all

153、 heavy industry capacity additions are innovative low-emissions routes No new internal combustion engine car sales50% of heavy truck sales are electric4 Gt CO2 capturedOverall net-zero emissionselectricity in advancedeconomiesMost appliances andcooling systems soldare best in classCapacity fitted wi

154、thCCUS or co-firinghydrogen-basedfuels reaches 6% oftotal generationIndustryOtherPowerTransportBuildings1.2Gt5.2Gt0.1Gt2.1Gt4.1Gt12.8Total CO2 emissions (Gt)20402050Net Zero Emissions by 2050 Interactive iea.li/nzeroadmap50% of existingbuildings retrofitted tozero-carbon-ready levelsAround 90% of ex

155、isting capacity in heavy industries reachesend of investment cycle50% of fuels used in aviation are low-emissionsOil demand is 50% of 2020 levelNet-zero emissionselectricity globallyPhase-out of all unabated coal and oil power plantsElectrolyser capacityreaches 2 400 GWIndustryOtherPowerTransportBui

156、ldings0.7Gt3.5Gt-0.5Gt-0.1Gt2.7Gt6.3Total CO2 emissions (Gt)33.9Total CO2 emissions (Gt)More than 90% of heavy industrial production is low-emissionsMore than 85% of buildings are zero-carbon-ready7.6 Gt CO2 capturedRenewables reachalmost 90% of totalelectricity generationAlmost 70% ofelectricity ge

157、nerationglobally from solar PVand wind520 Mt low-carbonhydrogenIndustryOtherPowerTransportBuildings0.1Gt0.5Gt-1Gt-0.4Gt0.7Gt0Total CO2 emissions (Gt)IEA. All rights reserved.Chapter 1 | Announced net zero pledges and the energy sector 29 Chapter1Announced net zero pledges and the energy sector There

158、hasbeenarapidincreaseoverthelastyearinthenumberofgovernmentspledgingtoreducegreenhousegasemissionstonetzero.Netzeropledgestodatecoveraround70%ofglobalGDPandCO2emissions.However,fewerthanaquarterofannouncednetzeropledgesarefixedindomesticlegislationandfewareyetunderpinnedbyspecificmeasuresorpoliciest

159、odelivertheminfullandontime. TheStatedPoliciesScenario(STEPS)takesaccountonlyofspecificpoliciesthatareinplaceorhavebeenannouncedbygovernments.AnnualenergyrelatedandindustrialprocessCO2emissionsrisefrom34Gtin2020to36Gtin2030andremainaroundthisleveluntil2050.Ifemissionscontinueonthistrajectory,withsim

160、ilarchangesinnonenergyrelatedGHGemissions,thiswouldleadtoatemperatureriseofaround2.7Cby2100(witha50%probability).Renewablesprovidealmost55%ofglobalelectricitygenerationin2050(upfrom29%in2020),butcleanenergytransitionslaginothersectors.Globalcoalusefallsby15%between2020and2050;oilusein2050is15%higher

161、thanin2020;andnaturalgasuseisalmost50%higher. TheAnnouncedPledgesCase(APC)assumesthatallannouncednationalnetzeropledges are achieved in full and on time, whether or not they are currentlyunderpinnedbyspecificpolicies.GlobalenergyrelatedandindustrialprocessCO2emissionsfallto30Gtin2030and22Gtin2050.Ex

162、tendingthistrajectory,withsimilaractiononnonenergyrelatedGHGemissions,wouldleadtoatemperaturerisein2100ofaround2.1C(witha50%probability).Globalelectricitygenerationnearlydoubles to exceed 50000TWh in 2050. The share of renewables in electricitygenerationrisestonearly70%in2050.Oildemanddoesnotreturnt

163、oits2019peakand falls about 10% from 2020 to 80mb/d in 2050. Coal use drops by 50% to2600Mtcein2050,whilenaturalgasuseexpandsby10%to4350bcmin2025andremainsaboutthatlevelto2050. Efficiency,electrificationandthereplacementofcoalbylowemissionssourcesinelectricity generation play a central role in achie

164、ving net zero goals in the APC,especiallyovertheperiodto2030.Therelativecontributionsofnuclear,hydrogen,bioenergyandCCUSvaryacrosscountries,dependingontheircircumstances. ThedivergenceintrendsbetweentheAPCandtheSTEPSshowsthedifferencethatcurrentnetzeropledgescouldmake,whileunderliningatthesametimeth

165、eneedforconcretepoliciesandshorttermplansthatareconsistentwithlongtermnetzeropledges.However,theAPCalsostarklyhighlightsthatexistingnetzeropledges,evenif delivered in full, fall well short of what is necessary to reach global netzeroemissionsby2050.S U M M A R YIEA. All rights reserved.30 Internatio

166、nal Energy Agency | Special Report 1.1 IntroductionNovember2021willseethemostimportantUNFrameworkConventiononClimateChange(UNFCCC)ConferenceoftheParties(COP26)sincetheParisAgreementwassignedin2015.AsCOP26approaches,anincreasingnumberofcountrieshaveannouncedlongtermgoalsto achieve netzero greenhouse

167、gas (GHG) emissions over the coming decades. On31March2021,theInternationalEnergyAgency(IEA)hostedaNetZeroSummittotakestockofthegrowinglistofcommitmentsfromcountriesandcompaniestoreachthegoalsoftheParisAgreement,andtofocusontheactionsnecessarytostartturningthosenetzerogoalsintoreality.Achievingthose

168、goalswillbedemanding.TheCovid19pandemicdeliveredamajorshocktotheworldeconomy,resultinginanunprecedented5.8%declineinCO2emissionsin2020.However,ourmonthlydatashowthatglobalenergyrelatedCO2emissionsstartedtoclimbagaininDecember2020,andweestimatethattheywillreboundtoaround33gigatonnesofcarbondioxide(Gt

169、CO2)in2021,only1.2%belowthelevelin2019(IEA,2021).Sustainableeconomicrecoverypackagesofferedauniqueopportunitytomake2019thedefinitivepeakinglobalemissions,buttheevidencesofarpointstoareboundinemissionsinparallelwithrenewedeconomicgrowth,atleastinthenearterm(IEA,2020a).Recent IEA analyses examined the

170、 technologies and policies needed for countries andregionstoachievenetzeroemissionsenergysystems.TheWorldEnergyOutlook2020examinedwhatwouldbeneededovertheperiodto2030toputtheworldonapathtowardsnetzero emissions by 2050 in the context of the pandemicrelated economic recovery(IEA,2020b).TheFasterInnov

171、ationCaseinEnergyTechnologyPerspectives2020exploredwhethernetzeroemissionscouldbeachievedgloballyby2050throughacceleratedenergytechnologydevelopmentanddeploymentalone:itshowedthat,relativetobaselinetrends,almosthalfoftheemissionssavingsneededin2050toreachnetzeroemissionsrelyontechnologiesthatarenoty

172、etcommerciallyavailable(IEA,2020c).Thisspecialreport,preparedattherequestoftheUKPresidentoftheCOP26,incorporatestheinsightsandlessonslearnedfrombothreportstocreateacomprehensiveanddetailedpathway, or roadmap, to achieve netzero energyrelated and industrial process CO2emissionsgloballyby2050.Itassess

173、esthecostsofachievingthisgoal,thelikelyimpactsonemploymentandtheeconomy,andthewiderimplicationsfortheworld.Italsohighlightsthekeymilestonesfortechnologies,infrastructure,investmentandpolicythatareneededalongtheroadto2050.Thisreportissetoutinfourchapters: Chapter1explorestheoutlookforglobalCO2emissio

174、nsandenergysupplyandusebasedonexistingpoliciesandpledges.ItsetsoutprojectionsofglobalenergyuseandemissionsbasedontheStatedPoliciesScenario(STEPS),whichincludesonlythefirmpoliciesthatareinplaceorhavebeenannouncedbycountries,includingNationallyChapter 1 | Announced net zero pledges and the energy sect

175、or 31 1Determined Contributions. It also examines the Announced Pledges Case (APC), avariantoftheSTEPSthatassumesthatallofthenetzerotargetsannouncedbycountriesaroundtheworldtodatearemetinfull. Chapter2presentstheNetZeroEmissionsby2050Scenario(NZE),whichdescribeshowenergydemandandtheenergymixwillneed

176、toevolveiftheworldistoachievenetzeroemissionsby2050.Italsoassessesthecorrespondinginvestmentneedsandexploreskeyuncertaintiessurroundingtechnologyandconsumerbehaviour. Chapter3examinestheimplicationsoftheNZEforvarioussectors,coveringfossilfuelsupply, the supply of lowemissions fuels (such as hydrogen

177、, ammonia, biofuels,syntheticfuelsandbiomethane)andtheelectricity,transport,industryandbuildingssectors.IthighlightsthekeychangesrequiredtoachievenetzeroemissionsintheNZEandthemajormilestonesthatareneededalongtheway. Chapter4explorestheimplicationsoftheNZEfortheeconomy,theenergyindustry,citizensandg

178、overnments.1.2 Emissionsreductiontargetsandnetzeropledges1.2.1 NationallyDeterminedContributionsUnder the Paris Agreement, Parties1are required to submit Nationally DeterminedContributions(NDCs)totheUNFCCCandtoimplementpolicieswiththeaimofachievingtheirstatedobjectives.Theprocessisdynamic;itrequires

179、PartiestoupdatetheirNDCseveryfiveyearsinaprogressivemannertoreflectthehighestpossibleambition.ThefirstroundofNDCs, submitted by 191countries, covers more than 90% of global energyrelated andindustrial process CO2emissions.2The first NDCs included some targets that wereunconditional and others that w

180、ere conditional on international support for finance,technologyandothermeansofimplementation.Asof23April2021,80countrieshavesubmittedneworupdatedNDCstotheUNFCCC,coveringjustover40%ofglobalCO2emissions(Figure1.1).3ManyoftheupdatedNDCsincludemorestringenttargetsthanintheinitialroundofNDCs,ortargetsfor

181、alargernumberofsectorsorforabroadercoverageofGHGs.Inaddition,27countriesandtheEuropeanUnionhavecommunicatedlongtermlowGHGemissionsdevelopmentstrategiestotheUNFCCC,asrequestedbytheParisAgreement.Someofthesestrategiesincorporateanetzeropledge.1Partiesreferstothe197membersoftheUNFCCCwhichincludesallUni

182、tedNationsmemberstates,UnitedNationsGeneralAssemblyObserverStateofPalestine,UNnonmemberstatesNiueandtheCookIslandsandtheEuropeanUnion.2Unlessotherwisestated,CO2emissionsinthisreportrefertoenergyrelatedandindustrialprocessCO2emissions.3SeveralcountrieshaveindicatedthattheyintendtosubmitneworupdatedND

183、Cslaterin2021orin2022.IEA. All rights reserved.32 International Energy Agency | Special Report Figure 1.1 Number of countries with NDCs, long-term strategies and net zero pledges, and their shares of 2020 global CO2 emissions IEA.Allrightsreserved.Around 40% of countries that have ratified the Paris

184、 Agreement have updated their NDCs, but net zero pledges cover around 70% of global CO2 emissions 1.2.2 NetzeroemissionspledgesTherehasbeenarapidincreaseinthenumberofgovernmentsmakingpledgestoreduceGHGemissionstonetzero(Figure1.2).IntheParisAgreement,countriesagreedto“achieveabalancebetweenanthropog

185、enicemissionsbysourcesandremovalsbysinksofgreenhousegasesinthesecondhalfofthecentury”.TheIntergovernmentalPanelonClimateChange(IPCC)SpecialReportonGlobalWarmingof1.5ChighlightedtheimportanceofreachingnetzeroCO2emissionsgloballybymidcenturyorsoonertoavoidtheworstimpactsofclimatechange(IPCC,2018).Netz

186、eroemissionspledgeshavebeenannouncedbynationalgovernments,subnationaljurisdictions,coalitions4andalargenumberofcorporate entities(seeSpotlight). Asof23April2021, 44countries and the European Union have pledged to meet a netzeroemissionstarget:intotaltheyaccountforaround70%ofglobalCO2emissionsandGDP(

187、Figure1.3). Of these, ten countries have made meeting their net zero target a legalobligation,eightareproposingtomakeitalegalobligation,andtheremainderhavemadetheirpledgesinofficialpolicydocuments.4Examplesinclude:theUNledClimateAmbitionAllianceinwhichsignatoriessignaltheyareworkingtowardsachievingn

188、etzeroemissionsby2050;andtheCarbonNeutralityCoalitionlaunchedattheUNClimateSummitin2017,inwhichsignatoriescommittodeveloplongtermlowGHGemissionsstrategiesinlinewithlimitingtemperaturerisesto1.5C.25%50%75%100%50100150200FirstNDCNeworupdatedNDCNZEpledgesLongtermstrategyNZEtargetsinlawNumberofcountries

189、Shareofglobal2020COemissions(rightaxis)Chapter 1 | Announced net zero pledges and the energy sector 33 1Figure 1.2 Number of national net zero pledges and share of global CO2 emissions covered IEA.Allrightsreserved.There has been a significant acceleration in net-zero emissions pledges announced by

190、governments, with an increasing number enshrined in law Notes:Inlaw=anetzeropledgehasbeenapprovedbyparliamentandislegallybinding.Proposed=anetzeropledgehasbeenproposedtoparliamenttobevotedintolaw.Inpolicydocument=anetzeropledgehasbeenproposedbutdoesnothavelegallybindingstatus.Figure 1.3 Coverage of

191、announced national net zero pledges IEA.Allrightsreserved.Countries accounting for around 70% of global CO2 emissions and GDP have set net zero pledges in law, or proposed legislation or in an official policy document Note:GDP=grossdomesticproductatpurchasingpowerparity.20%40%60%80%100%01

192、52001920202021Q1ShareofCOemissionsCountrieswithpledgesInlawProposedInpolicydocumentsGlobalCOcovered(rightaxis)20%40%60%80%100%GDPCOemissionsPopulationCountriesAdvancedeconomiesEmergingmarketanddevelopingeconomiesNotcoveredIEA. All rights reserved.34 International Energy Agency | Special R

193、eport IncontrasttosomeoftheshortertermcommitmentscontainedwithinNDCs,fewnetzeropledgesaresupportedbydetailedpoliciesandfirmroutestoimplementation.Netzeroemissionspledgesalsovaryconsiderablyintheirtimescaleandscope.Somekeydifferencesinclude: GHGcoverage.MostpledgescoverallGHGemissions,butsomeincludee

194、xemptionsordifferentrulesforcertaintypesofemissions.Forexample,NewZealandsnetzeropledgecoversallGHGsexceptbiogenicmethane,whichhasaseparatereductiontarget. Sectoralboundaries.Somepledgesexcludeemissionsfromspecificsectorsoractivities.For example, the Netherlands aims to achieve netzero GHG emissions

195、 only in itselectricitysector(aspartofanoverallaimtoreducetotalGHGemissionsby95%),andsomecountries,includingFrance,PortugalandSweden,excludeinternationalaviationandshipping. Useofcarbondioxideremoval(CDR).PledgestakevaryingapproachestoaccountforCDRwithinacountryssovereignterritory.CDRoptionsincluden

196、aturalCO2sinks,suchasforestsandsoils,aswellastechnologicalsolutions,suchasdirectaircaptureorbioenergywithcarboncaptureandstorage.Forexample,UruguayhasstatedthatnaturalCO2sinkswillbeusedtohelpitreachnetzeroemissions,whileSwitzerlandplanstouseCDRtechnologiestobalanceapartofitsresidualemissionsin2050.

197、Useofinternationalmitigationtransfers.SomepledgesallowGHGmitigationthatoccursoutsideacountrysborderstobecountedtowardsthenetzerotarget,suchasthroughthetransferofcarboncredits,whileothersdonot.Forexample,Norwayallowsthepotentialuseofinternationaltransfers,whileFranceexplicitlyrulesthemout.Somecountri

198、es,suchasSweden,allowsuchtransfersbutspecifyanupperlimittotheiruse. Timeframe.Themajorityofpledges,covering35%ofglobalCO2emissionsin2020,targetnetzeroemissionsby2050,butFinlandaimstoreachthatgoalby2035,AustriaandIcelandby2040andSwedenby2045.Amongothers,thePeoplesRepublicofChina(hereafterChina)andUkr

199、ainehavesetatargetdateafter2050.How are businesses responding to the need to reach net-zero emissions? Therehasbeenarapidriseinnetzeroemissionsannouncementsfromcompaniesinrecentyears:asofFebruary2021,around110companiesthatconsumelargeamountsof energy directly or produce energyconsuming goods have an

200、nounced netzeroemissionsgoalsortargets.Around6070%ofglobalproductionofheatingandcoolingequipment,roadvehicles,electricity and cement is from companies that have announced netzero emissionstargets (Figure1.4). Nearly 60% of gross revenue in the technology sector is alsogenerated by companies with net

201、zero emission targets. In other sectors, net zeroS P O T L I G H TChapter 1 | Announced net zero pledges and the energy sector 35 1pledgescover3040%ofairandshippingoperations,15%oftransportlogisticsand10%ofconstruction.Allthesesharesarelikelytokeepgrowingasmorecompaniesmakepledges.Figure 1.4 Sectora

202、l activity of large energy-related companies with announced pledges to reach net-zero emissions by 2050 IEA.Allrightsreserved.Some sectors are more advanced in terms of the extent of net zero targets by companies active in the sector Notes:Scope1=directemissionsfromenergyandothersourcesownedorcontro

203、lled.Scope2=indirectemissionsfromtheproductionofelectricityandheat,andfuelspurchasedandused.Scope3=indirectemissionsfromsourcesnotownedordirectlycontrolledbutrelatedtotheiractivities(suchasemployeetravel,extraction,transportandproductionofpurchasedmaterialsandfuels,andenduseoffuels,productsandservic

204、es).PartialvaluechainincludesScope1and2emissionsandScope3emissionsinspecificgeographiclocationsorsectionsofacompanysvaluechain.Source:IEAanalysisbasedoncompanyreportsfromthelargest1025companieswithineachsector.Companypledgesmaynotbereadilycomparable.Mostcompaniesaccountforemissionsandsetnetzeropledg

205、esbasedontheGHGProtocol(WRI,WBCSD,2004),butthecoverageandtimeframeofthesepledgesvarieswidely.Somecoveronlytheirownemissions,forexamplebyshiftingtotheuseofzeroemissionselectricityinofficesandproduction facilities, and by eliminating the use of oil in transport or industrialoperations,e.g.FedEx,Arcelo

206、rMittalandMaersk.Othersalsocoverwideremissionsfromcertainpartsoftheirvalueschains,e.g.RenaultinEurope,orallindirectemissionsrelatedtotheiractivities,e.g.Daikin,Toyota,Shell,EniandHeidelberg.Around60%ofpledgesaimtoachievenetzeroemissionsby2050,butseveralcompanieshavesetanearlierdeadlineof2030or2040.A

207、round40%ofcompaniesthathaveannouncednetzeropledgeshaveyettosetouthowtheyaimtoachievethem.Forthosewithdetailedplans,themainoptionsincludedirectemissionsreductions,useofCO2removaltechnologies,suchasafforestation,bioenergy20%40%60%80%100%ConstructionTransportlogisticsOilandgasShippingoperationsAircraft

208、PassengerairlinesSteelTechnologyPowerRoadvehiclesCementHeatingandcoolingScope1+2+3PartialvaluechainScope1+2NotargetIEA. All rights reserved.36 International Energy Agency | Special Report with carbon capture, utilisation and storage (CCUS), or direct air capture with CO2storage,andpurchasingemission

209、s(creditsgeneratedthroughemissionsreductionsthatoccurelsewhere).Theuseofoffsetscouldbeacosteffectivemechanismtoeliminateemissionsfrompartsofvaluechainswhereemissionsreductionsaremostchallenging,providedthatschemestogenerateemissionscreditsresultinpermanent,additionalandverifiedemissionsreductions.Ho

210、wever,thereislikelytobealimitedsupplyofemissionscreditsconsistentwithnetzeroemissionsgloballyandtheuseofsuchcreditscoulddivertinvestmentfromoptionsthatenabledirectemissionsreductions.1.3 OutlookforemissionsandenergyintheSTEPSTheIEAStatedPoliciesScenario(STEPS)illustratestheconsequencesofexistingands

211、tatedpoliciesfortheenergysector.Itdrawsonthelatestinformationregardingnationalenergyandclimateplansandthepoliciesthatunderpinthem.Ittakesaccountofallpoliciesthatarebackedbyrobustimplementinglegislationorregulatorymeasures,includingtheNDCsthatcountrieshaveputforwardundertheParisAgreementuptoSeptember

212、2020andtheenergycomponentsofannouncedeconomicstimulusandrecoverypackages.Sofar,fewnetzeroemissionspledgeshavebeenbackedupbydetailedpolicies,implementationplansorinterimtargets:mostnetzeropledgesthereforearenotincludedintheSTEPS.1.3.1 CO2emissionsGlobalCO2emissionsintheSTEPSbringaboutonlyamarginalove

213、rallimprovementinrecenttrends.Switchingtorenewablesleadstoanearlypeakinemissionsintheelectricitysector,butreductionsacrossallsectorsfallfarshortofwhatisrequiredfornetzeroemissionsin2050.AnnualCO2emissionsreboundquicklyfromthedipcausedbytheCovid19pandemicin2020:theyincreasefrom34Gtin2020to36Gtin2030a

214、ndthenremainaroundthisleveluntil2050(Figure1.5).Ifemissionstrendsweretocontinuealongthesametrajectoryafter2050, and with commensurate changes in other sources of GHG emissions, the globalaveragesurfacetemperaturerisewouldbearound2.7Cin2100(witha50%probability).Thereisstrongdivergencebetweentheoutloo

215、kforemissionsinadvancedeconomiesononehand and the emerging market and developing economies on the other. In advancedeconomies,despiteasmallreboundintheearly2020s,CO2emissionsdeclinebyaboutathirdbetween2020and2050,thankstotheimpactofpoliciesandtechnologicalprogressinreducingenergydemandandswitchingto

216、cleanerfuels.Inemergingmarketanddevelopingeconomies,energydemandcontinuestogrowstronglybecauseofincreasedpopulation,brisk economic growth, urbanisation and the expansion of infrastructure: these effectsoutweighimprovementsinenergyefficiencyandthedeploymentofcleantechnologies,causingCO2emissionstogro

217、wbyalmost20%bythemid2040s,beforedecliningmarginallyto2050.Chapter 1 | Announced net zero pledges and the energy sector 37 1Figure 1.5 Energy-related and industrial process CO2 emissions by region and sector in the STEPS IEA.Allrightsreserved.Global CO2 emissions rebound quickly after 2020 and then p

218、lateau, with declines in advanced economies offset by increases elsewhere Note:Other=agricultureandownuseintheenergysector.1.3.2 Totalenergysupply,totalfinalconsumptionandelectricitygenerationTheprojectedtrendsinCO2emissionsintheSTEPSresultfromchangesintheamountofenergyusedandthemixoffuelsandtechnol

219、ogies.Totalenergysupply(TES)5worldwiderisesbyjustover30%between2020and2050intheSTEPS(Figure1.6).Withoutaprojectedannualaveragereductionof2.2%inenergyintensity,i.e.energyuseperunitofGDP,TESin2050wouldbearound85%higher.Inadvancedeconomies,energyusefallsbyaround5%to2050,despitea75%increaseineconomicact

220、ivityovertheperiod.Inemergingmarketanddevelopingeconomies,energyuseincreasesby50%to2050,reflectingatriplingofeconomicoutputbetween2020and2050.DespitetheincreaseinGDPandenergyuseinemergingmarketanddevelopingeconomies,750millionpeoplestillhavenoaccesstoelectricityin2050,morethan95%oftheminsubSaharanAf

221、rica,and1.5billionpeoplecontinuetorelyonthetraditionaluseofbioenergyforcooking.Theglobalfuelmixchangessignificantlybetween2020and2050.Coaluse,whichpeakedin2014,fallsbyaround15%.Havingfallensharplyin2020duetothepandemic,oildemandreboundsquickly,returningtothe2019levelof98millionbarrelsperday(mb/d)by2

222、023andreachingaplateauofaround104mb/dshortlyafter2030.Naturalgasdemandincreasesfrom3900billioncubicmetres(bcm)in2020to4600bcmin2030and5700bcmin2050.Nuclearenergygrowsby15%between2020and2030,mainlyreflectingexpansionsinChina.5Totalprimaryenergysupply(ortotalprimaryenergydemand)hasbeenrenamedtotalener

223、gysupplyinaccordancewiththeInternationalRecommendationsforEnergyStatistics(IEA,2020d).020302050GtCORegionAdvancedeconomiesEmergingmarketanddevelopingeconomiesInternationalbunkers201020302050SectorElectricityIndustryTransportBuildingsOtherIEA. All rights reserved.38 International Energy Ag

224、ency | Special Report Figure 1.6 Total energy supply and CO2 emissions intensity in the STEPS IEA.Allrightsreserved.Coal use declines, oil plateaus and renewables and natural gas grow substantially to 2050 Note:EJ=exajoule;MJ=megajoule;TES=totalenergysupply.Totalfinalconsumptionincreasesinallsectors

225、intheSTEPS,ledbyelectricityandnaturalgas(Figure1.7).Allthegrowthisinemergingmarketanddevelopingeconomies.Thebiggestchange in energy use is in the electricity sector (Figure1.8). Global electricity demandincreasesby80%between2020and2050,arounddoubletheoverallrateofgrowthinfinalenergyconsumption.Moret

226、han85%ofthegrowthinglobalelectricitydemandcomesfromemergingmarketanddevelopingeconomies.Coalcontinuestoplayanimportantroleinelectricitygenerationinthoseeconomiesto2050,despitestronggrowthinrenewables:inadvancedeconomies,theuseofcoalforelectricitygenerationdropssharply.Figure 1.7 Total final consumpt

227、ion by sector and fuel in the STEPS IEA.Allrightsreserved.Final energy consumption grows on average by 1% per year between 2020 and 2050, with electricity and natural gas meeting most of the increase 0000402050gCO/MJEJCoalOilNaturalgasRenewablesTraditionaluseofbiomas

228、sNuclearCOintensityofTES(rightaxis)20102050IndustryTransportBuildings20102050EJCoalOilNaturalgasHydrogenElectricityHeatModernBioenergyOtherrenewablesTraditionaluse ofbiomassChapter 1 | Announced net zero pledges and the energy sector 39 1Figure 1.8 Electricity generation by fue

229、l and share of coal in the STEPS IEA.Allrightsreserved.Emerging market and developing economies drive most of the increase in global electricity demand, met mainly by renewables and gas, though coal remains important 1.3.3 EmissionsfromexistingassetsTheenergysectorcontainsalargenumberoflonglivedandc

230、apitalintensiveassets.Urbaninfrastructure, pipelines, refineries, coalfired power plants, heavy industrial facilities,buildingsandlargehydropowerplantscanhavetechnicalandeconomiclifetimesofwellover50years.Iftodaysenergyinfrastructurewastobeoperateduntiltheendofthetypicallifetimeinamannersimilartothe

231、past,weestimatethatthiswouldleadtocumulativeenergyrelatedandindustrialprocessCO2emissionsbetween2020and2050ofjustunder650GtCO2.Thisisaround30%morethantheremainingtotalCO2budgetconsistentwithlimitingglobalwarmingto1.5Cwitha50%probability(seeChapter2).Theelectricitysectoraccountsformorethan50%ofthetot

232、alemissionsthatwouldcomefromexistingassets;40%oftotalemissionswouldcomefromcoalfiredpowerplantsalone.Industry is the next largest sector, with steel, cement, chemicals and other industryaccounting for around 30% total emissions from existing assets. The long lifetime ofproductionfacilitiesinthesesub

233、sectors(typically3040yearsforablastfurnaceorcementkiln)andtherelativelyyoungageoftheglobalcapitalstockexplaintheirlargecontribution.Transportaccountsforjustover10%ofemissionsfromexistingassetsandthebuildingssectoraccountsforjustunder5%.Thelifetimeofvehiclesandequipmentinthetransportandbuildingssecto

234、rsisgenerallymuchshorterthanisthecaseinelectricityandindustrypassengercars,forexample,aregenerallyassumedtohavealifetimeofaround17yearsbutassociatedinfrastructurenetworkssuchasroads,electricitynetworksandgasgridshaveverylonglifetimes.There are some large regional differences in emissions levels from

235、 existing assets(Figure1.9).Advancedeconomiestendtohavemucholdercapitalstocksthanemergingmarketanddevelopingeconomies,particularlyintheelectricitysector,andexistingassetswillreachtheendoftheirlifetimesearlier.Forexample,theaverageageofcoalfiredpower20%40%60%02020302040205020040

236、2050ThousandTWhCoalOilNaturalgasNuclearRenewablesShareofcoal(rightaxis)AdvancedeconomiesEmergingmarketanddevelopingeconomiesIEA. All rights reserved.40 International Energy Agency | Special Report plantsinChinais13yearsand16yearsintherestofAsia,comparedtoaround35yearsinEuropeand40yearsintheUnitedSta

237、tes(IEA,2020e).Figure 1.9 Emissions from existing infrastructure by sector and region IEA.Allrightsreserved.Emerging market and developing economies account for three-quarters of cumulative emissions from existing infrastructure through to 2050 1.4 AnnouncedPledgesCaseTheAnnouncedPledgesCase(APC)ass

238、umesthatallnationalnetzeroemissionspledgesarerealisedinfullandontime.ItthereforegoesbeyondthepolicycommitmentsincorporatedintheSTEPS.TheaimoftheAPCistoseehowfarfullimplementationofthenationalnetzeroemissionspledgeswouldtaketheworldtowardsreachingnetzeroemissions,andtoexaminethescaleofthetransformati

239、onoftheenergysectorthatsuchapathwouldrequire.The way these pledges are assumed to be implemented in the APC has importantimplications for the energy system. A net zero pledge for all GHG emissions does notnecessarilymeanthatCO2emissionsfromtheenergysectorneedtoreachnetzero.Forexample,acountrysnetzer

240、oplansmayenvisagesomeremainingenergyrelatedemissionsareoffsetbytheabsorptionofemissionsfromforestryorlanduse,orbynegativeemissionsarisingfromtheuseofbioenergyordirectcaptureofCO2fromtheair(DAC)withCCUS.6Itisnotpossibletoknowexactlyhownetzeropledgeswillbeimplemented,butthedesignoftheAPC,particularlyw

241、ithrespecttothedetailsoftheenergysystempathway,hasbeeninformedbythepathwaysthatanumberofnationalbodieshavedevelopedtosupportnetzeropledges(Box1.1).PoliciesincountriesthathavenotyetmadeanetzeropledgeareassumedtobethesameasintheSTEPS.Nonpolicyassumptions,includingpopulationandeconomicgrowth,arethesame

242、asintheSTEPS.6For example, in recent economywide net zero mitigation pathways for the European Union, around140210milliontonnesCO2ofemissionsfromtheenergysectorremainin2050,whichareoffsetbyCDRfrommanagedlandusesinks,andbioenergyandDACwithCCUS(EuropeanCommission,2018).50203020402050GtCOEle

243、ctricityIndustryTransportBuildingsOtherAdvancedeconomies2020203020402050EmergingmarketanddevelopingeconomiesChapter 1 | Announced net zero pledges and the energy sector 41 1Box 1.1 Consultations with national bodies on achieving national net-zero emissions goals Tohelpinformitsworkonnetzeropathways,

244、theIEAengagedinextensiveconsultationswithexpertsinacademiaandnationalbodiesthathavedevelopedpathwaystosupportnetzeropledgesmadebygovernments.ThisincludesgroupsthathavedevelopednetzeroemissionspathwaysforseveralcountriesincludingChina,EuropeanUnion,Japan,UnitedKingdomandUnitedStates,aswellastheIPCC.T

245、hesepathwayswerenotuseddirectlyasinputfortheAPC,butthediscussionsinformedourmodellingofnationalpreferencesandconstraintswithineachjurisdictionandtobenchmarktheoveralllevelofenergyrelatedCO2emissionsreductionsthatarecommensuratewitheconomywidenetzerogoals.1.4.1 CO2emissionsIntheAPC,thereisasmallrebou

246、ndinemissionsto2023,althoughthisismuchsmallerthantheincreasethatimmediatelyfollowedthefinancialcrisisin200809.Emissionsneverreachthepreviouspeakof36GtCO2.GlobalCO2emissionsfallaround10%to30Gtin2030andto22Gtin2050.Thisisaround35%belowthelevelin2020and14GtCO2lowerthanintheSTEPS(Figure1.10).Ifemissions

247、continuethistrendafter2050,andwithasimilarlevelofchangesinnonenergyrelatedGHGemissions,theglobalaveragesurfacetemperaturerisein2100wouldbearound2.1C(witha50%probability).Figure 1.10 Global energy-related and industrial process CO2 emissions by scenario and reductions by region, 2010-2050 IEA.Allrigh

248、tsreserved.Achieving existing net zero pledges would reduce emissions globally to 22 Gt CO2 in 2050, a major reduction compared with current policies but still far from net-zero emissions 02020203020402050GtCOUnitedStatesEuropeanUnionJapanKoreaChinaOtherSTEPSAPCIEA. All rights reserved.42

249、 International Energy Agency | Special Report ThenetzeropledgesthathavebeenmadetodatethereforemakeamajordifferencetothecurrenttrajectoryforCO2emissions.Equally,however,existingnetzeropledgesfallwellshortofwhatisnecessarytoreachnetzeroemissionsgloballyby2050.Thishighlightstheimportanceofconcretepolic

250、iesandplanstodeliverinfulllongtermnetzeropledges.Italsounderlinesthevalueofothercountriesmaking(anddeliveringon)netzeropledges:themorecountriesthatdoso,andthemoreambitiousthosepledgesare,themorethegapwillnarrowwithwhatisneededtoreachnetzeroemissionsby2050.ThelargestdropinCO2emissionsisintheAPCisinth

251、eelectricitysectorwithglobalemissionsfalling by nearly 60% between 2020 and 2050. This occurs despite a neardoubling ofelectricitydemandasenergyendusesareincreasinglyelectrified,notablyintransportandbuildings(Figure1.11).Thiscompareswithafallinemissionsoflessthan15%intheSTEPS.Figure 1.11 Global CO2

252、emissions by sector in the STEPS and APC IEA.Allrightsreserved.Announced net zero pledges would cut emissions in 2050 by 60% in the electricity sector, 40% in buildings, 25% in industry and just over 10% in transport ThetransportandindustrysectorsseealessmarkedfallinCO2emissionsto2050intheAPC,within

253、creasesinenergydemandinregionswithoutnetzeropledgespartiallyoffsettingemissionsreductioneffortsinotherregions.Emissionsfromthebuildingssectordeclinebyaround40%between2020and2050,comparedwitharound5%intheSTEPS:fossilfueluseinbuildingsismostlytoprovideheating,andcountriesthathavemadepledgesaccountfora

254、relativelyhighproportionofglobalheatingdemand.Eveninregionswithnetzeropledges,therearesomeresidualemissionsin2050,mainlyinindustry and transport. This reflects the scarcity of commercially available options toeliminateallemissionsfromheavydutytrucks,aviation,shippingandheavyindustry.0 201

255、0 20202030 2040 20502030 2040 2050GtCOOtherBuildingsTransportIndustryElectricitySTEPSAPCChapter 1 | Announced net zero pledges and the energy sector 43 11.4.2 TotalenergysupplyGlobaltotalenergysupplyincreasesbymorethan15%between2020and2050intheAPC,comparedwithathirdintheSTEPS(Figure1.12).Energyinten

256、sityfallsonaveragebyaround2.6%peryearto2050comparedwith2.2%intheSTEPS.Thereisasubstantialincreaseinenergy demand in emerging market and developing economies, where economic andpopulationgrowthisfastestandwheretherearefewernetzeropledges,whichoutweighsthereductionsinenergydemandinthecountrieswithnetz

257、eropledges.Figure 1.12 Total energy supply by source in STEPS and APC IEA.Allrightsreserved.Announced net zero pledges lift renewables in the APC from 12% of total energy supply in 2020 to 35% in 2050, mainly at the expense of coal and oil TheglobalincreaseinenergysupplyintheAPCisledbyrenewables,whi

258、chincreasetheirshareintheenergymixfrom12%in2020to35%by2050(comparedwith25%in2050intheSTEPS).Solarphotovoltaics(PV)andwindintheelectricitysectortogethercontributeabout50%ofthegrowthinrenewablessupply,andbioenergycontributesaround30%.Bioenergyusedoublesinindustry,triplesinelectricitygenerationandgrows

259、byafactoroffourintransport:itplaysanimportantroleinreducingemissionsfromheatsupplyandremovingCO2fromtheatmospherewhenitiscombinedwithCCUS.Nuclearmaintainsitsshareoftheenergymix,itsoutputrisingbyaquarterto2030(comparedwitha15%increaseintheSTEPS),drivenbylifetimeextensionsatexistingplantsandnewreactor

260、sinsomecountries.GlobalcoalusefallssignificantlymorerapidlyintheAPCthanintheSTEPS.Itdropsfrom5250milliontonnesofcoalequivalent(Mtce)in2020to4000Mtcein2030and2600Mtcein2050(comparedwith4300MtceintheSTEPSin2050).Mostofthisdeclineisduetoreducedcoalfiredelectricitygenerationincountrieswithnetzeropledges

261、asplantsarerepurposed,retrofittedorretired.Inadvancedeconomies,unabatedcoalfiredpowerplants2004006008002000 2010 20202030 2040 20502030 2040 2050EJRenewablesNuclearNaturalgasOilCoalSTEPSAPCIEA. All rights reserved.44 International Energy Agency | Special Report aregenerallyphasedoutoverthenext1015ye

262、ars.Chinascoalconsumptionforelectricitydeclinesby85%between2020and2050onitspathtowardscarbonneutralityin2060.Thesedeclinesmorethanoffsetcontinuedgrowthforcoalincountrieswithoutnetzeropledges.Globally,coaluseinindustryfallsby25%between2020and2050,comparedwitha5%declineintheSTEPS.Oildemandrecoversslig

263、htlyintheearly2020sbutneveragainreachesitshistoricpeakin2019.Itdeclinesto90mb/dintheearly2030sandto80mb/din2050,around25mb/dlowerthanintheSTEPS,thankstoastrongpushtoelectrifytransportandshiftstobiofuelsandhydrogen,especiallyinregionswithpledges.Naturalgasdemandincreasesfromabout3900bcmin2020toaround

264、4350bcmin2025,butisthenbroadlyflatto2050(itcontinuestogrowtoaround5700bcmintheSTEPS).1.4.3 TotalfinalconsumptionGlobal energy use continues to grow in all major enduse sectors in the APC, albeitsubstantiallymoreslowlythanintheSTEPS(Figure1.13).Totalfinalconsumption(TFC)increasesbyaround20%in202050,c

265、omparedwitha35%increasegloballyintheSTEPS.MeasurestoimproveenergyefficiencyplayamajorroleintheAPCinreducingdemandgrowthincountrieswithnetzeropledges.Withoutthoseefficiencygains,electricitydemandgrowthwouldmakeitmuchharderforrenewablestodisplacefossilfuelsinelectricitygeneration.Thebiggestreductionin

266、energydemandrelativetotheSTEPSisintransport,thankstoanacceleratedshifttoelectricvehicles(EVs),whicharearoundthreetimesasenergyefficientasconventionalinternalcombustionenginevehicles.Figure 1.13 Total final consumption in the APC IEA.Allrightsreserved.Announced net zero pledges lead to a shift away f

267、rom fossil fuels globally to electricity, renewables and hydrogen. Electricitys share rises from 20% to 30% in 2050 25%50%75%100%2020203020402050TFCshares502020302040205020202030204020502020203020402050EJCoalOilNaturalgasHydrogenHeatElectricityRenewablesTraditionaluseofbiomassIndustryBuil

268、dingsTransportChapter 1 | Announced net zero pledges and the energy sector 45 1ThefuelmixinfinalenergyuseshiftssubstantiallyintheAPC.By2050,electricityisthelargestsinglefuelusedinallsectorsexcepttransport,whereoilremainsdominant.Thepersistenceofoilintransportstemspartlyfromtheextentofitscontinueduse

269、incountrieswithoutnetzeropledges,andpartlyfromthedifficultyofelectrifyingsubstantialpartsofthetransportsector,notablytruckingandaviation.Electricitydoesmakeinroadsintotransport,however,andrapidgrowthintheuptakeofEVsputsoiluseintodeclineafter2030,withEVsaccountingforaround35%ofglobalpassengercarsales

270、by2030andnearly50%in2050intheAPC(versusaround25%intheSTEPSin2050).ElectrificationinthebuildingssectorisalsomuchfasterintheAPCthanintheSTEPS.Thedirectuseofrenewablesexpandsinallendusesectorsgloballythroughto2050.Modernbioenergyaccountsforthebulkofthisgrowth,predominantlythroughtheblendingofbiomethane

271、intonaturalgasnetworksandliquidbiofuelsintransport.Thisoccursmainlyinregionswithnetzeropledges.HydrogenandhydrogenbasedfuelsplayalargerroleintheAPCthanintheSTEPS,reachingalmost15exajoules(EJ)in2050,thoughtheystillaccountforonly3%oftotalfinalconsumptionworldwidein2050.Transportaccountsformorethantwot

272、hirdsofallhydrogenconsumptionin2050.Inparallel,onsitehydrogenproductionintheindustryandrefiningsectorsgraduallyshiftstowardslowcarbontechnologies.1.4.4 ElectricitygenerationGlobalelectricitygenerationnearlydoublesduringthenextthreedecadesintheAPC,risingfrom about 26800terawatthours (TWh) in 2020 to

273、over 50000TWh in 2050, some4000TWhhigherthanintheSTEPS.Lowemissionsenergysourcesprovidealltheincrease.Theshareofrenewablesinelectricitygenerationrisesfrom29%in2020tonearly70%in2050,comparedwithabout55%intheSTEPS,assolarPVandwindraceaheadofallothersourcesofgeneration(Figure1.14).By2050,solarPVandwind

274、togetheraccountforalmosthalfofelectricitysupply.Hydropoweralsocontinuestoexpand,emergingasthethirdlargestenergy source in the electricity mix by 2050. Nuclear power increases steadily too,maintainingitsglobalmarketshareofabout10%,ledbyincreasesinChina.Naturalgasuseinelectricityincreasesslightlytothe

275、mid2020sbeforestartingtofallback,whilecoalsshareofelectricitygenerationfallsfromaround35%in2020tobelow10%in2050.Atthatpoint,20%oftheremainingcoalfiredoutputcomesfromplantsequippedwithCCUS.Hydrogenandammoniastarttoemergeasfuelinputstoelectricitygenerationbyaround2030,usedlargelyincombinationwithnatur

276、algasingasturbinesandwithcoalincoalfiredpower plants. This extends the life of existing assets, contributes to electricity systemadequacyandreducestheoverallcostsoftransformingtheelectricitysectorsinmanycountries.Totalbatterycapacityalsorisessubstantially,reaching1600gigawatts(GW)in2050,70%morethani

277、ntheSTEPS.IEA. All rights reserved.46 International Energy Agency | Special Report Figure 1.14 Global electricity generation by source in the APC IEA.Allrightsreserved.Renewables reach new heights in the APC, rising from just under 30% of electricity supply in 2020 to nearly 70% in 2050, while coal-

278、fired generation steadily declines Note:Otherrenewables=geothermal,solarthermalandmarine.2468020203020402050ThousandTWh20%40%60%80%100%2020 2030 2050OilUnabatednaturalgasUnabatedcoalFossilfuelswithCCUSHydrogenbasedNuclearOtherrenewablesHydropowerWindSolarPVChapter 2 | A global pathway to

279、net-zero CO emissions in 2050 47 Chapter2A global pathway to net-zero CO emissions in 2050 TheNetZeroEmissionsby2050Scenario(NZE)showswhatisneededfortheglobalenergysectortoachievenetzeroCO2emissionsby2050.AlongsidecorrespondingreductionsinGHGemissionsfromoutsidetheenergysector,thisisconsistentwithli

280、mitingtheglobaltemperatureriseto1.5Cwithoutatemperatureovershoot(witha 50% probability). Achieving this would require all governments to increaseambitionsfromcurrentNationallyDeterminedContributionsandnetzeropledges. IntheNZE,globalenergyrelatedandindustrialprocessCO2emissionsfallbynearly40%between2

281、020and2030andtonetzeroin2050.Universalaccesstosustainableenergyisachievedby2030.Thereisa75%reductioninmethaneemissionsfromfossilfueluseby2030.Thesechangestakeplacewhiletheglobaleconomymorethandoublesthroughto2050andtheglobalpopulationincreasesby2billion. Totalenergysupplyfallsby7%between2020and2030i

282、ntheNZEandremainsataroundthislevelto2050.SolarPVandwindbecometheleadingsourcesofelectricitygloballybefore2030andtogethertheyprovidenearly70%ofglobalgenerationin2050.Thetraditionaluseofbioenergyisphasedoutby2030. Coaldemanddeclinesby90%tolessthan600Mtcein2050,oildeclinesby75%to24mb/d,andnaturalgasdec

283、linesby55%to1750bcm.Thefossilfuelsthatremainin 2050 are used in the production of nonenergy goods where the carbon isembodiedintheproduct(likeplastics),inplantswithcarboncapture,utilisationandstorage(CCUS),andinsectorswherelowemissionstechnologyoptionsarescarce. Energyefficiency,windandsolarprovidea

284、roundhalfofemissionssavingsto2030intheNZE.Theycontinuetodeliveremissionsreductionsbeyond2030,buttheperiodto2050seesincreasingelectrification,hydrogenuseandCCUSdeployment,forwhichnotalltechnologiesareavailableonthemarkettoday,andtheseprovidemorethanhalfofemissionssavingsbetween2030and2050.In2050,ther

285、eis1.9GtofCO2removal in the NZE and 520million tonnes of lowcarbon hydrogen demand.Behaviouralchangesbycitizensandbusinessesavoid1.7GtCO2emissionsin2030,curbenergydemandgrowth,andfacilitatecleanenergytransitions. Annualenergysectorinvestment,whichaveragedUSD2.3trilliongloballyinrecentyears,jumpstoUS

286、D5trillionby2030intheNZE.AsashareofglobalGDP,averageannualenergyinvestmentto2050intheNZEisaround1%higherthaninrecentyears. TheNZEtapsintoallopportunitiestodecarbonisetheenergysector,acrossallfuelsandalltechnologies.Butthepathto2050hasmanyuncertainties.Ifbehaviouralchangesweretobemorelimitedthanenvis

287、agedintheNZE,orsustainablebioenergylessavailable, thentheenergytransitionwouldbe more expensive. AfailuretodevelopCCUSforfossilfuelscoulddelayorpreventthedevelopmentofCCUSforprocessemissionsfromcementproductionandcarbonremovaltechnologies,makingitmuchhardertoachievenetzeroemissionsby2050.S U M M A R

288、 YIEA. All rights reserved.48 International Energy Agency | Special Report 2.1 IntroductionAchievingaglobalenergytransitionthatiscompatiblewiththeworldsclimategoalsisunquestionably a formidable task. As highlighted in Chapter 1, current pledges bygovernmentstoreduceemissionstonetzerocollectivelycove

289、raround70%oftodaysglobaleconomicactivityandglobalCO2emissions.TheAnnouncedPledgesCaseshowsthat,ifallthosepledgesweremetinfull,itwouldnarrowthegapbetweenwhereweareheadingandwhereweneedtobetoachievenetzeroemissionsby2050worldwide.Butitalsoshowsthatthegapwouldremainlarge.Meetingallexistingnetzeropledge

290、sinfullwouldstillleave22gigatonnes(Gt)ofenergyrelatedandindustrialprocessCO2emissionsgloballyin2050,consistentwithatemperaturerisein2100ofaround2.1C(witha50%probability).Inthischapter,weexaminetheenergysectortransformationwhichisembodiedinourNetZeroEmissionsby2050Scenario.First,itprovidesanoverviewo

291、fthekeyassumptionsandmarketdynamicsunderlyingtheprojections,includingprojectedfossilfuelandCO2prices.ItdiscussestrendsinglobalCO2emissions,energyuseandinvestment,includingthekeyrolesplayedbyefficiencymeasures,behaviouralchange,electrification,renewables,hydrogenandhydrogenbasedfuels,bioenergy,andcar

292、boncapture,utilisationandstorage(CCUS).Further,itdiscussessomeofthekeyuncertaintiessurroundingtheglobalpathwaytowardsnetzeroemissionsrelatedtobehaviouralchange,theavailabilityofsustainablebioenergy,andthedeploymentofCCUSforfossilfuels.Thetransformationofspecificenergysectorsisassessedanddiscussedind

293、etailinChapter3.2.2 ScenariodesignTheNetZeroEmissionsby2050Scenario(NZE)isdesignedtoshowwhatisneededacrossthemainsectorsbyvariousactors,andbywhen,fortheworldtoachievenetzeroenergyrelatedandindustrialprocessCO2emissionsby2050.1Italsoaimstominimisemethaneemissionsfromtheenergysector.Inrecentyears,thee

294、nergysectorwasresponsibleforaroundthreequartersofglobalgreenhousegas(GHG)emissions.AchievingnetzeroenergyrelatedandindustrialprocessCO2emissionsby2050intheNZEdoesnotrelyonactioninareasotherthantheenergysector,butlimitingclimatechangedoesrequiresuchaction.Wethereforeadditionallyexaminethereductionsin

295、CO2emissionsfromlandusethatwouldbecommensurate with the transformation of the energy sector in the NZE, working incooperationwiththeInternationalInstituteforAppliedSystemsAnalysis(IIASA).InparallelwithactiononreducingallothersourcesofGHGemissions,achievingnetzeroCO2emissionsfromtheenergysectorby2050

296、isconsistentwitharounda50%chanceoflimitingthelongterm average global temperature rise to 1.5C without a temperature overshoot(IPCC,2018).1Unlessotherwisestated,carbondioxide(CO2)emissionsinthischapterrefertoenergyrelatedandindustrialprocessCO2emissions.NetzeroCO2emissionsreferstozeroCO2emissionstoth

297、eatmosphere,orwithanyresidualCO2emissionsoffsetbyCO2removalfromdirectaircaptureorbioenergywithcarboncaptureandstorage.Chapter 2 | A global pathway to net-zero CO emissions in 2050 49 2TheNZEaimstoensurethatenergyrelatedandindustrialprocessCO2emissionsto2030areinlinewithreductionsin1.5Cscenarioswithn

298、oorloworlimitedtemperatureovershootassessedintheIPCCinitsSpecialReportonGlobalWarmingof1.5C.2Inaddition,theNZEincorporatesconcreteactionontheenergyrelatedUnitedNationsSustainableDevelopmentGoalsrelatedtoachievinguniversalenergyaccessby2030anddeliveringamajorreductioninairpollution.Theprojectionsinth

299、eNZEweregeneratedbyahybridmodelthatcombinescomponents of the IEAs World Energy Model (WEM), which is used to produce theprojectionsintheannualWorldEnergyOutlook,andtheEnergyTechnologyPerspectives(ETP)model.Box 2.1 International Energy Agency modelling approach for the NZE Anew,hybridmodellingapproac

300、hwasadoptedtodeveloptheNZEandcombinestherelativestrengthsoftheWEMandtheETPmodel.TheWEMisalargescalesimulationmodeldesignedtoreplicatehowcompetitiveenergymarketsfunctionandtoexaminetheimplicationsofpoliciesonadetailedsectorbysectorandregionbyregionbasis.TheETP model is a largescale partialoptimisatio

301、n model with detailed technologydescriptionsofmorethan800individualtechnologiesacrosstheenergyconversion,industry,transportandbuildingssectors.Thisisthefirsttimethismodellingapproachhasbeenimplemented.Thecombinationofthetwomodelsallowsforauniquesetofinsightsonenergymarkets,investment,technologies,an

302、dthelevelanddetailofpoliciesthatwouldbeneededtobringabouttheenergysectortransformationintheNZE.ResultsfromtheWEMandETPmodelhavebeencoupledwiththeGreenhouseGasAirPollutionInteractionsandSynergies(GAINS)modeldevelopedbyIIASA(Amannetal.,2011).TheGAINSmodelisusedtoevaluateairpollutantemissionsandresulta

303、nthealthimpactslinkedtoairpollution.Forthefirsttime,IEAmodelresultshavealsobeencoupledwiththeIIASAsGlobalBiosphereManagementModel(GLOBIOM)toprovidedataonlanduseandnetemissionsimpactsofbioenergydemand.TheimpactsofchangesininvestmentandspendingonglobalGDPintheNZEhavebeenestimated by the International

304、Monetary Fund (IMF) using the Global IntegratedMonetaryandFiscal(GIMF)model.GIMFisamulticountrydynamicstochasticgeneralequilibriummodelusedbytheIMFforpolicyandriskanalysis(Laxtonetal.,2010;Andersonetal.,2013).IthasbeenusedtoproducetheIMFsWorldEconomicOutlookscenarioanalysessince2008.Therearemanyposs

305、iblepathstoachievenetzeroCO2emissionsgloballyby2050andmanyuncertaintiesthatcouldaffectanyofthem;theNZEisthereforeapath,notthepathtonetzeroemissions.Muchdepends,forexample,onthepaceofinnovationinnewandemerging2TheIPCCclassifiesscenariosas“noorlimitedtemperatureovershoot”,iftemperaturesexceed1.5Cbyles

306、sthan0.1Cbutreturntolessthan1.5Cin2100,andas“higherovershoot”,iftemperaturesexceed1.5Cby0.10.4Cbutreturntolessthan1.5Cin2100.IEA. All rights reserved.50 International Energy Agency | Special Report technologies,theextentto whichcitizens areableorwillingtochangebehaviour,theavailability of sustainabl

307、e bioenergy and the extent and effectiveness of internationalcollaboration.WeinvestigatesomeofthekeyalternativesanduncertaintieshereandinChapter3.TheNetZeroEmissionsby2050Scenarioisbuiltonthefollowingprinciples. Theuptakeofalltheavailabletechnologiesandemissionsreductionoptionsisdictatedbycosts,tech

308、nologymaturity,policypreferences,andmarketandcountryconditions. Allcountriescooperatetowardsachievingnetzeroemissionsworldwide.Thisinvolvesallcountriesparticipatingineffortstomeetthenetzerogoal,workingtogetherinaneffectiveandmutuallybeneficialway,andrecognisingthedifferentstagesofeconomicdevelopment

309、ofcountriesandregions,andtheimportanceofensuringajusttransition. Anorderlytransitionacrosstheenergysector.Thisincludesensuringthesecurityoffuelandelectricitysuppliesatalltimes,minimisingstrandedassetswherepossibleandaimingtoavoidvolatilityinenergymarkets.2.2.1 PopulationandGDPTheenergysectortransfor

310、mationintheNZEoccursagainstthebackdropoflargeincreasesintheworldspopulationandeconomy(Figure2.1).In2020,therewerearound7.8billionpeopleintheworld;thisisprojectedtoincreasebyaround750millionby2030andbynearly2billionpeopleby2050inlinewiththemedianvariantoftheUnitedNationsprojections(UNDESA,2019).Nearl

311、yallofthepopulationincreaseisinemergingmarketanddevelopingeconomies:thepopulationofAfricaaloneincreasesbymorethan1.1billionbetween2020and2050.Figure 2.1 World population by region and global GDP in the NZE IEA.Allrightsreserved.By 2050, the worlds population expands to 9.7 billion people and the glo

312、bal economy is more than twice as large as in 2020 Notes:GDP=grossdomesticproductinpurchasingpowerparity;C&SAmerica=CentralandSouthAmerica.Sources:IEAanalysisbasedonUNDESA(2019);OxfordEconomics(2020);IMF(2020a,2020b).05002468020203020402050TrillionUSD(2019)BillionpeopleRestofwo

313、rldEurasiaMiddleEastNorthAmericaC&SAmericaSoutheastAsiaEuropeAfricaIndiaChinaGlobalGDP(rightaxis)Chapter 2 | A global pathway to net-zero CO emissions in 2050 51 2The worlds economy is assumed to recover rapidly from the impact of the Covid19pandemic.Itssizereturnstoprecrisislevelsin2021.From2022,th

314、eGDPgrowthtrendisclosetotheprepandemicrateofaround3%peryearonaverage,inlinewithassessmentsfromtheIMF.Theresponsetothepandemicleadstoalargeincreaseingovernmentdebt,butresumedgrowth,alongwithlowinterestratesinmanycountries,makethismanageableinthelongterm.By2030,theworldseconomyisaround45%largerthanin2

315、020,andby2050itismorethantwiceaslarge.2.2.2 EnergyandCO2pricesProjectionsoffutureenergypricesareinevitablysubjecttoahighdegreeofuncertainty.InIEAscenarios,theyaredesignedtomaintainanequilibriumbetweensupplyanddemand.TherapiddropinoilandnaturalgasdemandintheNZEmeansthatnofossilfuelexplorationisrequir

316、edandnonewoilandnaturalgasfieldsarerequiredbeyondthosethathavealreadybeenapprovedfordevelopment.Nonewcoalminesormineextensionsarerequiredeither.Pricesareincreasinglysetbytheoperatingcostsofthemarginalprojectrequiredtomeetdemand,andthisresultsinsignificantlylowerfossilfuelpricesthaninrecentyears.Theo

317、ilprice drops to around USD35/barrel by 2030 and then drifts down slowly towardsUSD25/barrelin2050.Table 2.1 Fossil fuel prices in the NZE Realterms(USD2019)200402050IEAcrudeoil(USD/barrel)9137352824Naturalgas(USD/MBtu)UnitedStates5.12.11.92.02.0EuropeanUnion8.72.03.83.83.5China7.85.75.24

318、.84.6Japan12.95.74.44.24.1Steamcoal(USD/tonne)UnitedStates6045242422EuropeanUnionJapanCoastalChinaNotes:MBtu=millionBritishthermalunits.TheIEAcrudeoilpricesareaweightedaverageimportpriceamongIEAmembercountries.Naturalgaspricesareweightedaveragesexpressedonagrosscalor

319、ificvaluebasis.USnaturalgaspricesreflectthewholesalepriceprevailingonthedomesticmarket.TheEuropeanUnionandChinagaspricesreflectabalanceofpipelineandliquefiednaturalgas(LNG)imports,whileJapangaspricessolelyreflectLNGimports.LNGpricesusedarethoseatthecustomsborder,priortoregasification.Steamcoalprices

320、areweightedaveragesadjustedto6000kilocaloriesperkilogramme.USsteamcoalpricesreflectminemouthpriceplustransportandhandlingcost.CoastalChinasteamcoalpricereflectsabalanceofimportsanddomesticsales,whiletheEuropeanUnionandJapanesesteamcoalpricesaresolelyforimports.IEA. All rights reserved.52 Internation

321、al Energy Agency | Special Report InlinewiththeprincipleoforderlytransitionsgoverningtheNZE,thetrajectoryforoilmarketsandpricesavoidsexcessivevolatility.Whathappensdependstoalargedegreeonthestrategiesadoptedbyresourcerichgovernmentsandtheirnationaloilcompanies.IntheNZEitisassumedthat,despitehavinglo

322、wercostresourcesattheirdisposal,theyrestrictinvestmentinnewfields.Thislimitstheneedfortheshuttinginandclosureofhighercostproduction.ThemarketshareofmajorresourcerichcountriesneverthelessstillrisesintheNZEduetothelargesizeandslowdeclineratesoftheirexistingfields.Producereconomiescouldpursuealternativ

323、eapproaches.Facedwithrapidlyfallingoilandgasdemand,theycould,forexample,opttoincreaseproductionsoastocaptureanevenlargershareofthemarket.Inthisevent,thecombinationoffallingdemandandincreasedavailabilityoflowcostoilwouldundoubtedlyleadtoevenlowerandprobablymuchmorevolatileprices.Inpractice,theoptions

324、opentoparticularproducercountrieswoulddependontheirresiliencetoloweroilpricesandontheextenttowhichexportmarketshavedevelopedforlowemissionsfuelsthatcouldbeproducedfromtheirnaturalresources.Anticipating and mitigating feedbacks from the supply side is a central element of thediscussionaboutorderlyene

325、rgytransitions.Adropinpricesusuallyresultsinsomereboundindemand,andpoliciesandregulationswouldbeessentialtoavoidthisleadingtoanyincrease in the unabated use of fossil fuels, which would undermine wider emissionsreductionefforts.Astheenergysectortransforms,morefuelsaretradedglobally,suchashydrogenbas

326、edfuelsandbiofuels.Thepricesofthesecommoditiesareassumedtobesetbythemarginalcostofdomesticproductionorimportswithineachregion.AbroadrangeofenergypoliciesandaccompanyingmeasuresareintroducedacrossallregionstoreduceemissionsintheNZE.Thisincludes:renewablefuelmandates;efficiencystandards;marketreforms;

327、research,developmentanddeployment;andtheeliminationofinefficientfossilfuelsubsidies.Directemissionsreductionregulationsarealsoneededinsomecases.Inthetransportsector,forexample,regulationsareimplementedtoreducesalesofinternalcombustionenginevehiclesandincreasetheuseofliquidbiofuelsandsyntheticfuelsin

328、aviationandshipping,aswellasmeasurestoensurethatlowoilpricesdonotleadtoanincreaseinconsumption.CO2pricesareintroducedacrossallregionsintheNZE(Table2.2).Theyareassumedtobeintroduced in the immediate future across all advanced economies for the electricitygeneration,industryandenergyproductionsectors,

329、andtoriseonaveragetoUSD130pertonne(tCO2)by2030andtoUSD250/tCO2by2050.InanumberofothermajoreconomiesincludingChina,Brazil,RussiaandSouthAfricaCO2pricesinthesesectorsareassumedtorisetoaroundUSD200/tCO2in2050.CO2pricesareintroducedinallotheremergingmarketanddevelopingeconomies,althoughitisassumedthatth

330、eypursuemoredirectpoliciestoadaptandtransformtheirenergysystemsandsothelevelofCO2pricesislowerthanelsewhere.Chapter 2 | A global pathway to net-zero CO emissions in 2050 53 2Table 2.2 CO2 prices for electricity, industry and energy production in the NZE USD(2019)pertonneofCO22025203020402050Advanced

331、economies75130205250Selectedemergingmarketanddevelopingeconomies*4590160200Otheremergingmarketanddevelopingeconomies3153555*IncludesChina,Russia,BrazilandSouthAfrica.2.3 CO2emissionsGlobal energyrelated and industrial process CO2 emissions in the NZE fall to around21GtCO2in2030andtonetzeroin2050(Fig

332、ure2.2).3CO2emissionsinadvancedeconomiesasawholefalltonetzerobyaround2045andthesecountriescollectivelyremovearound0.2GtCO2fromtheatmospherein2050.Emissionsinseveralindividualemergingmarketanddevelopingeconomiesalsofalltonetzerowellbefore2050,butinaggregatetherearearound0.2GtCO2ofremainingemissionsin

333、thisgroupofcountriesin2050.TheseareoffsetbyCO2removalinadvancedeconomiestoprovidenetzeroCO2emissionsatthegloballevel.Figure 2.2 Global net CO2 emissions in the NZE IEA.Allrightsreserved.CO2 emissions fall to net zero in advanced economies around 2045 and globally by 2050. Per capita emissions global

334、ly are similar by the early-2040s. Note:IncludesCO2emissionsfrominternationalaviationandshipping.3Intheperiodto2030,CO2emissionsintheNZEfallatabroadlysimilarratetotheP2illustrativepathwayintheIPCCSR1.5(IPCC,2018).TheP2scenarioisdescribedas“ascenariowithshiftstowardssustainableandhealthy consumption

335、patterns, lowcarbon technology innovation, and wellmanaged land systems withlimitedsocietalacceptabilityforBECCSbioenergywithcarboncaptureandstorage”.After2030,emissionsintheNZEfallatamuchfasterpacethanintheP2scenario,whichhas5.6GtCO2ofresidualenergysectorandindustrialprocessCO2emissionsremainingin2

336、050.200402050GtCOAdvancedeconomiesEmergingmarketanddevelopingeconomiesCOemissions3036903020402050tCOpercapitaPercapitaCOemissionsIEA. All rights reserved.54 International Energy Agency | Special Report Severalemergingmarketanddevelopingeconomieswithaverylargepotentia

337、lforproducingrenewablesbasedelectricityandbioenergyarealsoakeysourceofcarbondioxideremoval(CDR).ThisincludesmakinguseofrenewableelectricitysourcestoproducelargequantitiesofbiofuelswithCCUS,someofwhichisexported,andtocarryoutdirectaircapturewithcarboncaptureandstorage(DACCS).PercapitaCO2emissionsinad

338、vancedeconomiesdropfromaround8tCO2perpersonin2020toaround3.5tCO2in2030,alevelclosetotheaverageinemergingmarketanddevelopingeconomies in 2020. Per capita emissions also fall in emerging market and developingeconomies,butfromamuchlowerstartingpoint.Bytheearly2040s,percapitaemissionsinbothregionsarebro

339、adlysimilarataround0.5tCO2perperson.CumulativeglobalenergyrelatedandindustrialprocessCO2emissionsbetween2020and2050 amount to just over 460Gt in the NZE. Assuming parallel action to address CO2emissionsfromagriculture,forestryandotherlanduse(AFOLU)overtheperiodto2050wouldresultinaround40GtCO2fromAFO

340、LU(seesection2.7.2).ThismeansthattotalCO2emissionsfromallsourcessome500GtCO2areinlinewiththeCO2budgetsincludedinthe IPCC SR1.5, which indicated that the total CO2 budget from 2020 consistent withprovidinga50%chanceoflimitingwarmingto1.5Cis500GtCO2(IPCC,2018).4AswellasreducingCO2emissionstonetzero,th

341、eNZEseekstoreducenonCO2emissionsfromtheenergysector.Methaneemissionsfromfossilfuelproductionanduse,forexample,fallfrom115milliontonnes(Mt)methanein2020(3.5GtCO2equivalentCO2eq)5to30Mtin2030and10Mtin2050.ThefastestandlargestreductionsinglobalemissionsintheNZEareinitiallyseenintheelectricitysector(Fig

342、ure2.3).Electricitygenerationwasthelargestsourceofemissionsin2020,butemissionsdropbynearly60%intheperiodto2030,mainlyduetomajorreductionsfromcoalfiredpowerplants,andtheelectricitysectorbecomesasmallnetnegativesourceofemissionsaround2040.Emissionsfromthebuildingssectorfallby40%between2020and2030thank

343、stoashiftawayfromtheuseoffossilfuelboilers,andretrofittingtheexistingbuildingstocktoimproveitsenergyperformance.Emissionsfromindustryandtransportbothfallbyaround20%overthisperiod,andtheirpaceofemissionsreductionsacceleratesduringthe2030sastherolloutoflowemissionsfuelsandotheremissionsreductionoption

344、sisscaledup.Nonetheless,thereareanumberofareasintransportandindustryinwhichitisdifficulttoeliminateemissionsentirelysuchasaviationandheavyindustryandbothsectorshaveasmalllevelofresidualemissionsin2050.TheseresidualemissionsareoffsetwithapplicationsofBECCSandDACCS.4ThisbudgetisbasedonTable2.2oftheIPC

345、CSR1.5(IPCC,2018).Itassumes0.53Cadditionalwarmingfromthe20062015periodtogivearemainingCO2budgetfrom2018of580GtCO2.Therewerearound80GtCO2emissionsemittedfrom2018to2020.5NonCO2gasesareconvertedtoCO2equivalentsbasedonthe100yearglobalwarmingpotentialsreportedbytheIPCC5thAssessmentReport(IPCC,2014).Oneto

346、nneofmethaneisequivalentto30tonnesofCO2.Chapter 2 | A global pathway to net-zero CO emissions in 2050 55 2Figure 2.3 Global net-CO2 emissions by sector, and gross and net CO2 emissions in the NZE IEA.Allrightsreserved.Emissions from electricity fall fastest, with declines in industry and transport a

347、ccelerating in the 2030s. Around 1.9 Gt CO2 are removed in 2050 via BECCS and DACCS. Notes:Other=agriculture,fuelproduction,transformationandrelatedprocessemissions,anddirectaircapture.BECCS=bioenergywithcarboncaptureandstorage;DACCS=directaircapturewithcarboncaptureandstorage.BECCSandDACCSincludesC

348、O2emissionscapturedandpermanentlystored.TheNZEincludesasystematicpreferenceforallnewassetsandinfrastructuretobeassustainableandefficientaspossible,andthisaccountsfor50%oftotalemissionsreductionsin 2050. Tackling emissions from existing infrastructure accounts for another 35% ofreductionsin2050,while

349、behaviouralchangesandavoideddemand,includingmaterialsefficiency6gainsandmodalshiftsinthetransportsector,providetheremaining15%ofemissionsreductions(seesection2.5.2).AwiderangeoftechnologiesandmeasuresaredeployedintheNZEtoreduceemissionsfromexistinginfrastructuresuchaspowerplants,industrialfacilities

350、,buildings,networks,equipmentandappliances.TheNZEisdesignedtominimisestrandedcapitalwherepossible,i.e.caseswheretheinitialinvestmentisnotrecouped,butinmanycasesearlyretirementsorlowerutilisationleadtostrandedvalue,i.e.areductioninrevenue.Therapiddeploymentofmoreenergyefficienttechnologies,electrific

351、ationofendusesandswiftgrowthofrenewablesallplayacentralpartinreducingemissionsacrossallsectorsintheNZE(Figure2.4).By2050,nearly90%ofallelectricitygenerationisfromrenewables,asisaround25%ofnonelectricenergyuseinindustryandbuildings.Thereisalsoamajorroleforemergingfuelsandtechnologies,notablyhydrogena

352、ndhydrogenbasedfuels,bioenergyandCCUS,especiallyinsectorswhereemissionsareoftenmostchallengingtoreduce.6Materialsefficiencyincludesstrategiesthatreducematerialdemand,orshifttotheuseofloweremissionsmaterialsorloweremissionsproductionroutes.Examplesincludelightweightingandrecycling.50502030

353、20402050GtCOElectricityBuildingsTransportIndustryOtherSector200402050GrossCOemissionsBECCSandDACCSNetCOemissionsGrossandnetCOemissionsIEA. All rights reserved.56 International Energy Agency | Special Report Figure 2.4 Average annual CO2 reductions from 2020 in the NZE IEA.Allri

354、ghtsreserved.Renewables and electrification make the largest contribution to emissions reductions, but a wide range of measures and technologies are needed to achieve net-zero emissions Notes: Activity = changes in energy service demand from economic and population growth.Behaviour=change in energy

355、service demand from user decisions, e.g. changing heating temperatures.Avoideddemand=changeinenergyservicedemandfromtechnologydevelopments,e.g.digitalisation.2.4 Totalenergysupplyandfinalenergyconsumption2.4.1 Totalenergysupply7Totalenergysupplyfallsto550exajoules(EJ)in2030,7%lowerthanin2020(Figure2

356、.5).Thisoccursdespitesignificantincreasesintheglobalpopulationandeconomybecauseofafallinenergyintensity(theamountofenergyusedtogenerateaunitofGDP).Energyintensityfallsby4%onaverageeachyearbetween2020and2030.Thisisachievedthrougha combination of electrification, a push to pursue all energy and materi

357、als efficiencyopportunities,behaviouralchangesthatreducedemandforenergyservices,andamajorshiftawayfromthetraditionaluseofbioenergy.8Thislevelofimprovementinenergyintensityismuchgreaterthanhasbeenachievedinrecentyears:between2010and2020,averageannualenergyintensityfellbylessthen2%eachyear.After2030,c

358、ontinuingelectrificationofendusesectorshelpstoreduceenergyintensityfurther,buttheemphasisonmaximisingenergyefficiencyimprovementsintheyearsupto7Thetermstotalprimaryenergysupply(TPES)ortotalprimaryenergydemand(TPED)havebeenrenamedastotal energy supply (TES) in accordance with the International Recomm

359、endations for Energy Statistics(IEA,2020a).8Modernformsofcookingrequiremuchlessenergythanthetraditionaluseofbiomassininefficientstoves.Forexample,cookingwithaliquefiedpetroleumgasstoveusesaroundfivetimeslessenergythanthetraditionaluseofbiomass.604020020202125 202630 203135 203640 204145 204650GtCO2A

360、ctivityBehaviourandavoideddemandEnergysupplyefficiencyBuildingsefficiencyIndustryefficiencyTransportefficiencyElectricvehiclesOtherelectrificationHydrogenWindandsolarTransportbiofuelsOtherrenewablesOtherpowerCCUSindustryCCUSpowerandfuelsupplyNetemissionsreductionChapter 2 | A global pathway to net-z

361、ero CO emissions in 2050 57 22030limitstheavailableopportunitiesinlateryears.Atthesametime,increasingproductionofnewfuels,suchasadvancedbiofuels,hydrogenandsyntheticfuels,tendstopushupenergyuse.Asaresult,therateofdeclineinenergyintensitybetween2030and2050slowsto2.7%peryear.Withcontinuedeconomicandpo

362、pulationgrowth,thismeansthattotalenergysupplyfallsslightlybetween2030and2040butthenremainsbroadlyflatto2050.Totalenergysupplyin2050intheNZEisclosetothelevelin2010,despiteaglobalpopulationthatisnearly3billionpeoplehigherandaglobaleconomythatisoverthreetimeslarger.Figure 2.5 Total energy supply in the

363、 NZE IEA.Allrightsreserved.Renewables and nuclear power displace most fossil fuel use in the NZE, and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050 Theenergymixin2050intheNZEismuchmorediversethantoday.In2020,oilprovided30%oftotalenergysupply,whilecoalsupplied26%andnatural

364、gas23%.In2050,renewablesprovidetwothirdsofenergyuse,splitbetweenbioenergy,wind,solar,hydroelectricityandgeothermal(Figure2.6).Thereisalsoalargeincreaseinenergysupplyfromnuclearpower,whichnearlydoublesbetween2020and2050.TherearelargereductionsintheuseoffossilfuelsintheNZE.Asashareoftotalenergysupply,

365、theyfallfrom80%in2020tojustover20%in2050.However,theirusedoesnotfalltozeroin2050:significantamountsarestillusedinproducingnonenergygoods,inplantswithCCUS,andinsectorswhereemissionsareespeciallyhardtoabatesuchasheavyindustryandlongdistancetransport.Allremainingemissionsin2050areoffsetbynegativeemissi

366、onselsewhere(Box2.2).Coalusefallsfrom5250milliontonnesofcoalequivalent(Mtce)in2020to2500Mtcein2030andtolessthan600Mtcein2050anaverageannualdeclineof7%eachyearfrom2020to2050.Oildemanddroppedbelow90millionbarrelsperday(mb/d)in2020anddemanddoesnotreturntoits2019peak:itfallsto72mb/din2030and24mb/din2050

367、anannualaveragedeclineofmorethan4%from2020to2050.Naturalgasusedroppedto3900billioncubicmetres(bcm)in2020,butexceedsitsprevious05006002000200402050EJOtherOtherrenewablesWindSolarHydroTraditionaluseofbiomassModerngaseousbioenergyModernliquidbioenergyModernsolidbioenergyNuclearNat

368、uralgasOilCoalIEA. All rights reserved.58 International Energy Agency | Special Report 2019peakinthemid2020sbeforestartingtodeclineasitisphasedoutintheelectricitysector.Naturalgasusedeclinesto3700bcmin2030and1750bcmin2050anannualaveragedeclineofjustunder3%from2020to2050.Figure 2.6 Total energy suppl

369、y of unabated fossil fuels and low-emissions energy sources in the NZE IEA.Allrightsreserved.Some fossil fuels are still used in 2050 in the production of non-energy goods, in plants equipped with CCUS, and in sectors where emissions are hard to abate Note:Lowemissionsincludestheuseoffossilfuelswith

370、CCUSandinnonenergyuses.Box 2.2 Why does fossil fuel use not fall to zero in 2050 in the NZE? Intotal,around120EJoffossilfuelsisconsumedin2050intheNZErelativeto460EJin2020.Threemainreasonsunderliewhyfossilfuelusedoesnotfalltozeroin2050,eventhoughtheenergysectoremitsnoCO2onanetbasis: Usefornonenergypu

371、rposes.Morethan30%oftotalfossilfuelusein2050intheNZEincluding70%ofoiluseisinapplicationswherethefuelsarenotcombustedandsodonotresultinanydirectCO2emissions(Figure2.7).Examplesincludeuseaschemicalfeedstocksandinlubricants,paraffinwaxesandasphalt.Therearemajoreffortstolimitfossilfueluseintheseapplicat

372、ionsintheNZE,forinstanceglobalplasticcollectionratesforrecyclingrisingfrom15%in2020to55%in2050,butfossilfueluseinnonenergyapplicationsstillrisesslightlyto2050. UsewithCCUS.Aroundhalfoffossilfuelusein2050isinplantsequippedwithCCUS(around 3.5GtCO2 emissions are captured from fossil fuels in 2050). Aro

373、und925bcmofnaturalgasisconvertedtohydrogenwithCCUS.Inaddition,around470Mtceofcoaland225bcmofnaturalgasareusedwithCCUSintheelectricityandindustrialsectors,mainlytoextendtheoperationsofyoungfacilitiesandreducestrandedassets.05006002010 2020 2030 2040 20502010 2020 2030 2040 2050EJOtherrenew

374、ablesSolarWindTraditionaluseofbiomassModernbioenergyHydroNuclearNaturalgasOilCoalUnabatedfossilfuelsLowemissionsChapter 2 | A global pathway to net-zero CO emissions in 2050 59 2 Useinsectorswheretechnologyoptionsarescarce.Theremaining20%offossilfuelusein2050intheNZEisinsectorswherethecompleteelimin

375、ationofemissionsis particularly challenging. Mostly this is oil, as it continues to fuel aviation inparticular.Asmallamountofunabatedcoalandnaturalgasareusedinindustryandin the production of energy. The unabated use of fossil fuel results in around1.7GtCO2emissionsin2050,whicharefullyoffsetbyBECCSan

376、dDACCS.Figure 2.7 Fossil fuel use and share by sector in 2050 in the NZE IEA.Allrightsreserved.More than 30% of fossil fuel use in 2050 is not combusted and so does not result in direct CO2 emissions, around 50% is paired with CCUS Notes: Noncombustion includes use for nonemitting, nonenergy purpose

377、s such as petrochemicalfeedstocks,lubricantsandasphalt.Energyproductionincludesfuelusefordirectaircapture.Solid,liquidandgaseousfuelscontinuetoplayanimportantroleintheNZE,whichseeslargeincreasesinbioenergyandhydrogen(Figure2.8).Around40%ofbioenergyusedtodayisforthetraditionaluseofbiomassincooking:th

378、isisrapidlyphasedoutintheNZE.Modernformsofsolidbiomass,whichcanbeusedtoreduceemissionsinboththeelectricityandindustrysectors,risefrom32EJin2020to55EJin2030and75EJin2050,offsettingalargeportionofadropincoaldemand.Theuseoflowemissionsliquidfuels,suchasammonia,syntheticfuelsandliquidbiofuels,increasesf

379、rom3.5EJ(1.6millionbarrelsofoilequivalentperdaymboe/d)in2020tojustabove25EJ(12.5mboe/d)in2050.Thesupplyoflowemissionsgases,suchashydrogen,syntheticmethane,biogasandbiomethanerisesfrom2EJin2020to17EJin2030and50EJin2050.Theincreaseingaseoushydrogenproductionbetween2020and2030intheNZEistwiceasfastasthe

380、fastesttenyearincreaseinshalegasproductionintheUnitedStates.20%40%60%80%100%1020304050NoncombustionEnergyproductionIndustryPowerTransportBuildingsEJwithCCUSwithoutCCUSwithCCUSwithoutCCUSwithCCUSwithoutCCUSShareofsectorCoalNaturalgasOiltotal(rightaxis)IEA. All rights reserved.60 International Energy

381、Agency | Special Report Figure 2.8 Solid, liquid and gaseous fuels in the NZE IEA.Allrightsreserved.Increases in low-emissions solids, liquids and gases from bioenergy, hydrogen and hydrogen-based fuels offset some of the declines in coal, oil and natural gas Notes:Hydrogenconversionlosses=consumpti

382、onofnaturalgaswhenproducinglowcarbonmerchanthydrogenusingsteammethanereforming.Hydrogenbasedincludeshydrogen,ammoniaandsyntheticfuels.2.4.2 TotalfinalconsumptionTotalfinalconsumptionworldwidereboundsmarginallyfollowingits5%dropin2020,butitneverreturnsto2019levelsintheNZE(435EJ).Itfallsbyjustunder1%e

383、achyearonaveragebetween2025and2050to340EJ.Energyefficiencymeasuresandelectrificationarethetwomaincontributingfactors,withbehaviouralchangesandmaterialsefficiencyalsoplayingarole.Withouttheseimprovements,finalenergyconsumptionin2050wouldbearound640EJ, around 90% higher than the level in the NZE. Fina

384、l consumption of electricityincreasesby25%from2020to2030,andby2050itismorethandoublethelevelin2020.TheincreaseinelectricityconsumptionfromendusessectorsandfromhydrogenproductionmeansthatoverallannualelectricitydemandgrowthisequivalenttoaddinganelectricitymarketthesizeofIndiaeveryyearintheNZE.Theshar

385、eofelectricityinglobalfinalenergyconsumptionjumpsfrom20%in2020to26%in2030andtoaround50%in2050(Figure2.9).Thedirectuseofrenewablesinbuildingsandindustrytogetherwithlowemissionsfuelssuchasbioenergyandhydrogenbasedfuelsprovideafurther28%offinalenergyconsumptionin 2050; fossil fuels comprise the remaind

386、er, most of which are used in nonemittingprocessesorinfacilitiesequippedwithCCUS.Inindustry,mostoftheglobalemissionsreductionsintheNZEduringtheperiodto2030aredeliveredthroughenergyandmaterialsefficiencyimprovements,electrificationofheat,andfuelswitchingtosolarthermal,geothermalandbioenergy.Thereafte

387、r,CCUSandhydrogenplayanincreasinglyimportantroleinreducingCO2emissions,especiallyinheavyindustriessuchassteel,cementandchemicals.Electricityconsumptioninindustrymorethandoublesbetween2020and2050,providing45%oftotalindustrialenergyneedsin2050(Figure2.10).500020040205020002010202

388、02030204020502000200402050EJCoalOilNaturalgasHydrogenconversionTraditionalbiomassModernbioenergyHydrogenbasedSolidsLiquidsGaseslossesChapter 2 | A global pathway to net-zero CO emissions in 2050 61 2Thedemandformerchanthydrogeninindustryincreasesfromlessthan1Mttodaytoaround40Mtin2050.Afur

389、ther10%ofindustrialenergydemandin2050ismetbyfossilfuelsusedinplantsequippedwithCCUS.Figure 2.9 Global total final consumption by fuel in the NZE IEA.Allrightsreserved.The share of electricity in final energy use jumps from 20% in 2020 to 50% in 2050 Note:Hydrogenbasedincludeshydrogen,ammoniaandsynth

390、eticfuels.Intransport,thereisarapidtransitionawayfromoilworldwide,whichprovidedmorethan90%offuelusein2020.Inroadtransport,electricitycomestodominatethesector,providingmorethan60%ofenergyusein2050,whilehydrogenandhydrogenbasedfuelsplayasmallerrole,mainlyinfuellinglonghaulheavydutytrucks.Inshipping,en

391、ergyefficiencyimprovementssignificantlyreduceenergyneeds(especiallyupto2030),whileadvancedbiofuelsandhydrogenbasedfuels,suchasammonia,increasinglydisplaceoil.Inaviation,theuseofsyntheticliquidsandadvancedbiofuelsgrowsrapidly,andtheirshareoftotalenergydemandrisesfromalmostzerotodaytoalmost80%in2050.O

392、verall,electricitybecomes the dominant fuel in the transport sector globally by the early 2040s, and itaccountsforaround45%ofenergyconsumptioninthesectorin2050(comparedwith1.5%in 2020). Hydrogen and hydrogenbased fuels account for nearly 30% of consumption(almostzeroin2020)andbioenergyforafurther15%

393、(around4%in2020).Inbuildings,theelectrificationofendusesincludingheatingleadstodemandforelectricityincreasingbyaround35%between2020and2050:itbecomesthedominantfuel,reaching16000terawatthours(TWh)in2050,andaccountingfortwothirdsoftotalbuildingssectorenergyconsumption.By2050,twothirdsofresidentialbuil

394、dingsinadvancedeconomiesandaround40%ofresidentialbuildingsinemergingmarketanddevelopingeconomiesarefittedwithaheatpump.Onsiterenewablesbasedenergysystemssuchassolarwaterheatersandbiomassboilersprovideafurtherquarteroffinalenergyuseinthebuildingssectorin2050(upfrom6%in2020).Lowemissionsdistrictheatin

395、gandhydrogenprovideonly7%ofenergyuse,butplayasignificantroleinsomeregions.500300350200402050200402050EJOilNaturalgasCoalHeatModernbioenergyTraditionaluseofbiomassHydrogenbasedOtherrenewablesFossilfuelsunabatedFossilfuelswithCCUSHydrogenbasedNuclearSolarPVandwindHydro

396、OtherrenewablesFuelsandotherElectricityuseFuelsandotherElectricityuseIEA. All rights reserved.62 International Energy Agency | Special Report Figure 2.10 Global final energy consumption by sector and fuel in the NZE IEA.Allrightsreserved.There is a wholesale shift away from unabated fossil fuel use

397、to electricity, renewables, hydrogen and hydrogen-based fuels, modern bioenergy and CCUS in end-use sectors Note:Hydrogenbasedincludeshydrogen,ammoniaandsyntheticfuels.Buildingsenergyconsumptionfallsby25%between2020and2030,largelyasaresultofamajorpushtoimproveefficiencyandtophaseoutthetraditionaluse

398、ofsolidbiomassforcooking: it is replaced by liquefied petroleum gas (LPG), biogas, electric cookers andimprovedbioenergystoves.Universalaccesstoelectricityisachievedby2030,andthisaddslessthan1%toglobalelectricitydemandin2030.Energyconsumptioninthebuildingssectorcontractsbyaround15%between2030and2050

399、givencontinuedefficiencyimprovementsandelectrification.By2050,energyuseinbuildingsis35%lowerthanin2020.Energyefficiencymeasuresincludingimprovingbuildingenvelopesandensuringthatallnewappliancesbroughttomarketarethemostefficientmodelsavailableplayakeyroleinlimiting the rise in electricity demand in t

400、he NZE. Without these measures, electricitydemandinbuildingswouldbearound10000TWhhigherin2050,oraround70%higherthanthelevelintheNZE.How does the NZE compare with similar 1.5 C scenarios assessed by the IPCC? TheIPCCSR1.5includes90individualscenariosthathaveatleasta50%chanceoflimitingwarmingin2100to1

401、.5C(IPCC,2018).9Only18ofthesescenarioshavenetzeroCO2energysectorandindustrialprocessemissionsin2050.Inotherwords,onlyoneinfiveofthe1.5CscenariosassessedbytheIPCChavethesamelevelofemissionsreduction9Includes53scenarioswithnoorlimitedtemperatureovershootand37scenarioswithahighertemperatureovershoot.40

402、800402050200402050200402050EJOtherHydrogenbasedOtherrenewablesModernbioenergyTraditionaluseofbiomassElectricityFossilfuelswithCCUSUnabatedfossilfuelsIndustryTransportBuildingsS P O T L I G H TChapter 2 | A global pathway to net-zero CO emissions in 2050 63

403、 2ambition for the energy and industrial process sectors to 2050 as theNZE.10 Somecomparisonsbetweenthese18scenariosandtheNZEin2050(Figure2.11):Figure 2.11 Comparison of selected indicators of the IPCC scenarios and the NZE in 2050 IEA.Allrightsreserved.The NZE has the lowest level of energy-related

404、 CDR and bioenergy of any scenario that achieves net-zero energy sector and industrial process CO2 emissions in 2050 Notes:CCUS=carboncapture,utilisationandstorage;CDR=carbondirectremoval;TES=totalenergysupply;TFC=totalfinalconsumption.EnergyrelatedCDRincludesCO2capturedthroughbioenergywithCCUSanddi

405、rectaircapturewithCCUSandputintopermanentstorage.Windandsolarsharearegivenasapercentageoftotalelectricitygeneration.Only17ofthe18scenariosassessedbytheIPCCreporthydrogenuseinTFC. UseofCCUS.ThescenariosassessedbytheIPCChaveamedianofaround15GtCO2capturedusingCCUSin2050,morethandoublethelevelintheNZE.

406、UseofCDR.CO2emissionscapturedandstoredfromBECCSandDACCSintheIPCCscenariosrangefrom3.516GtCO2in2050,comparedwith1.9GtCO2intheNZE.10Thelowenergydemandscenariohasaround4.5GtCO2energysectorandindustrialprocessemissionsin2050andisnotincludedinthiscomparison.10203040EJHydrogeninTFC25%50%75%100%Windandsola

407、rshare80160240320EJBioenergyTES5101520GtCO2CCUS5101520GtCOEnergyrelatedCDR0EJScenariosassessedbyIPCCNZETFCIEA. All rights reserved.64 International Energy Agency | Special Report Bioenergy.TheIPCCscenariosuseamedianof200EJofprimarybioenergyin2050(comparedwith63EJtoday)andanumberusemoretha

408、n300EJ.TheNZEuses100EJofprimarybioenergyin2050. Energy efficiency. Total final consumption in the IPCC scenarios range from300550EJin2050(comparedwitharound410EJin2020).TheNZEhasfinalenergyconsumptionof340EJin2050. Hydrogen. The IPCC scenarios have a median of 18EJ hydrogen in total finalconsumption

409、in2050,comparedwith33EJintheNZE.11 Electricitygeneration.Thesharesofwindandsolarintotalelectricitygenerationin2050intheIPCCscenariosrangefromaround1580%withamedianvalueof50%.IntheNZE,windandsolarprovide70%oftotalgenerationin2050.2.5 KeypillarsofdecarbonisationAchievingtherapidreductioninCO2emissions

410、overthenext30yearsintheNZErequiresabroad range of policy approaches and technologies (Figure2.12). The key pillars ofdecarbonisationoftheglobalenergysystemareenergyefficiency,behaviouralchanges,electrification,renewables,hydrogenandhydrogenbasedfuels,bioenergyandCCUS.Figure 2.12 Emissions reductions

411、 by mitigation measure in the NZE, 2020-2050 IEA.Allrightsreserved.Solar, wind and energy efficiency deliver around half of emissions reductions to 2030 in the NZE, while electrification, CCUS and hydrogen ramp up thereafter Notes:Activity=energyservicedemandchangesfromeconomicandpopulationgrowth.Be

412、haviour=energyservicedemandchangesfromuserdecisions,e.g.changingheatingtemperatures.Avoideddemand=energyservicedemandchangesfromtechnologydevelopments,e.g.digitalisation.Otherfuelshifts=switchingfromcoalandoiltonaturalgas,nuclear,hydropower,geothermal,concentratingsolarpowerormarine.11TheNZEvaluefor

413、hydrogenincludesthetotalenergycontentofhydrogenandhydrogenbasedfuelsconsumedinfinalenergyconsumption.0302050GtCOActivityBehaviourandavoideddemandEnergyefficiencyHydrogenbasedElectrificationBioenergyWindandsolarOtherfuelshiftsCCUS+24%50%+51%100%MitigationmeasuresMeasuresMeasuresChapter 2 |

414、 A global pathway to net-zero CO emissions in 2050 65 22.5.1 EnergyefficiencyMinimisingenergydemandgrowththroughimprovementsinenergyefficiencymakesacriticalcontributionintheNZE.Manyefficiencymeasuresinindustry,buildings,appliancesandtransportcanbeputintoeffectandscaledupveryquickly.Asaresult,energye

415、fficiencymeasuresarefrontloadedintheNZE,andtheyplaytheirlargestroleincurbingenergydemandandemissionsintheperiodto2030.Althoughenergyefficiencyimprovesfurtherafter2030,itscontributiontooverallemissionsreductionsfallsasothermitigationmeasuresplay an expanding role. Without the energy efficiency, behav

416、ioural changes andelectrificationmeasuresdeployedintheNZE,finalenergyconsumptionwouldbearound300EJhigherin2050,almost90%abovethe2050levelintheNZE(Figure2.13).Efficiencyimprovementsalsohelpreducethevulnerabilityofbusinessesandconsumerstopotentialdisruptionstoelectricitysupplies.Figure 2.13 Total fina

417、l consumption and demand avoided by mitigation measure in the NZE IEA.Allrightsreserved.Energy efficiency plays a key role in reducing energy consumption across end-use sectors Notes:CCUS=carboncaptureutilisationandstorage.Otherfuelswitchincludesswitchingtohydrogenrelatedfuels,bioenergy,solarthermal

418、,geothermal,ordistrictheat.Inthebuildingssector,manyefficiencymeasuresyieldfinancialsavingsaswellasreducingenergyuseandemissions.IntheNZE,thereareimmediateandrapidimprovementsinenergyefficiencyinbuildings,mainlyfromlargescaleretrofitprogrammes.Around2.5%ofexistingresidentialbuildingsinadvancedeconom

419、iesareretrofittedeachyearto2050intheNZEtocomplywithzerocarbonreadybuildingstandards12(comparedwithacurrentretrofitrateoflessthan1%).Inemergingmarketanddevelopingeconomies,buildingreplacement12Azerocarbonreadybuildingishighlyenergyefficientanduseseitherrenewableenergydirectlyorfromanenergysupplythatw

420、illbefullydecarbonisedby2050intheNZE(suchaselectricityordistrictheat).Azerocarbonreadybuildingwillbecomeazerocarbonbuildingby2050,withoutfurtherchangestothebuildingoritsequipment(seeChapter3).20 2030 20502020 2030 20502020 2030 2050EJNZEdemandElectricityOtherfuelswitchEfficiencyBehaviourI

421、ndustryBuildingsTransportAvoideddueto:IEA. All rights reserved.66 International Energy Agency | Special Report ratesarehigherandtheannualrateofretrofitsisaround2%throughto2050.By2050,thevastmajorityofexistingresidentialbuildingsareretrofittedtobezerocarbonbuildings.Energyrelatedbuildingcodesareintro

422、ducedinallregionsby2030toensurethatvirtuallyall new buildings constructed are zerocarbonready. Minimum energy performancestandards and replacement schemes for lowefficiency appliances are introduced orstrengthenedinthe2020sinallcountries.Bythemid2030s,nearlyallhouseholdappliancessoldworldwideareasef

423、ficientasthemostefficientmodelsavailabletoday.Inthetransportsector,stringentfueleconomystandardsandensuringnonewpassengercarsrunningoninternalcombustionengines(ICEs)aresoldgloballyfrom2035resultinarapidshiftinvehiclesalestowardmuchmoreefficientelectricvehicles(EVs).13Theimpactonefficiencyisseeninthe

424、2030s,asthecompositionofthevehiclestockchanges:electriccarsmakeup20%ofallcarsontheroadin2030and60%in2040(comparedwith1%today).Continuousimprovementsinthefueleconomyofheavyroadvehiclestakeplacethroughto2050astheyswitchtoelectricityorfuelcells,whileefficiencyinshippingandaviationimprovesasmoreefficien

425、tplanesandshipsreplaceexistingstock.Intheindustrysector,mostmanufacturingstockisalreadyquiteefficient,buttherearestillopportunities for energy efficiency improvements. Energy management systems,bestinclassindustrialequipmentsuchaselectricmotors,variablespeeddrives,heatersandgrindersareinstalled,andp

426、rocessintegrationoptionssuchaswasteheatrecoveryareexploitedtotheirmaximumeconomicpotentialsintheperiodto2030intheNZE.After2030,therateofefficiencyimprovementslowsbecausemanyofthetechnologiesneededtoreduce emissions in industry in the NZE require more energy than their equivalentconventionaltechnolog

427、ies.TheuseofCCUS,forexample,increasesenergyconsumptiontooperate the capture equipment, and producing electrolytic hydrogen onsite requiresadditionalenergythanthatneededforthemainmanufacturingprocess.Table 2.3 Key global milestones for energy efficiency in the NZE Sector202020302050Totalenergysupply2

428、003050Annualenergyintensityimprovement(MJperUSDGDP)1.6%4.2%2.7%IndustryEnergyintensityofdirectreducedironfromnaturalgas(GJpertonne)121110Processenergyintensityofprimarychemicals(GJpertonne)171615TransportAveragefuelconsumptionofICEheavytrucksfleet(index2020=100)1008163BuildingsShareofzero

429、carbonreadybuildingsintotalstock85%Newbuildings:heating&coolingenergyconsumption(index2020=100)1005020Appliances:unitenergyconsumption(index2020=100)1007560Notes:ICE=internalcombustionengine;zerocarbonreadybuildings=seedescriptioninsection3.7.13In2020,theaveragebatteryelectriccarrequiredaround30%oft

430、heenergyoftheaverageICEcartoprovidethesamelevelofactivity.Chapter 2 | A global pathway to net-zero CO emissions in 2050 67 22.5.2 BehaviouralchangeThewholescaletransformationoftheenergysectordemonstratedintheNZEcannotbeachievedwithouttheactiveandwillingparticipationofcitizens.Itisultimatelypeoplewho

431、drive demand for energyrelated goods and services, and societal norms and personalchoiceswillplayapivotalroleinsteeringtheenergysystemontoasustainablepath.Justunder40% of emissions reductionsintheNZEresultfromtheadoption oflowcarbontechnologies that require massive policy support and investment but

432、little directengagementfromcitizensorconsumers,e.g.technologiesinelectricitygenerationorsteelproduction.Afurther55%ofemissionsreductionsrequireamixtureofthedeploymentoflowcarbon technologies and the active involvement or engagement of citizens andconsumers,e.g.installingasolarwaterheaterorbuyinganEV

433、.Afinal8%ofemissionsreductionsstemfrombehaviouralchangesandmaterialsefficiencygainsthatreduceenergydemand,e.g.flyinglessforbusinesspurposes(Figure2.14).Consumerattitudescanalsoimpactinvestmentdecisionsbybusinessesconcernedaboutpublicimage.IntheNZE,behaviouralchangereferstochangesinongoingorrepeatedb

434、ehaviouronthepartofconsumerswhichimpactenergyservicedemandortheenergyintensityofanenergyrelatedactivity.14ReductionsinenergyservicedemandintheNZEalsocomefromadvancesintechnology,butthesearenotcountedasbehaviouralchanges.Forexample,increaseddigitalisationandagrowingmarketshareofsmartappliances,suchas

435、smartthermostatsorspacedifferentiatedthermalcontrolsreducethenecessityforpeopletoplayanactiveroleinenergysavinginhomesovertimeintheNZE.TherearethreemaintypesofbehaviouralchangeincludedintheNZE.Awiderangeofgovernmentinterventionscouldbeusedtomotivatethesechanges(seesection2.7.1). Reducing excessive o

436、r wasteful energy use. This includes reducing energy use inbuildingsandonroads,e.g.byreducingindoortemperaturesettings,adoptingenergysavingpracticesinhomesandlimitingdrivingspeedsonmotorwaysto100kilometresperhour. Transportmodeswitching.Thisincludesashifttocycling,walking,ridesharingortakingbusesfor

437、tripsincitiesthatwouldotherwisebemadebycar,aswellasreplacingregionalairtravelbyhighspeedrailinregionswherethisisfeasible.Manyofthesetypesofbehaviouralchangeswouldrepresentabreakinfamiliarorhabitualwaysoflifeandassuchwouldrequireadegreeofpublicacceptanceandevenenthusiasm.Manywouldalsorequirenewinfras

438、tructure,suchascyclelanesandhighspeedrailnetworks,clearpolicysupportandhighqualityurbanplanning. Materialsefficiencygains.Thisincludesreduceddemandformaterials,e.g.higherratesofrecycling,andimproveddesignandconstructionofbuildingsandvehicles.Thescopeforgainstosomeextentreflectssocietalpreferences.Fo

439、rinstance,insomeplacesthere14Thismeans,forexample,thatpurchasinganelectricheatpumpinsteadofagasboilerisnotconsideredasabehaviouralchange,asitisbothaninfrequenteventanddoesnotnecessarilyimpactenergyservicedemand.IEA. All rights reserved.68 International Energy Agency | Special Report hasbeenashiftawa

440、yfromtheuseofsingleuseplasticsinrecentyears,atrendthatacceleratesintheNZE.Gainsinmaterialsefficiencydependonamixtureoftechnicalinnovationinmanufacturingandbuildingsconstruction,standardsandregulationstosupportbestpracticeandensureuniversaladoptionoftheseinnovations,andincreasedrecyclinginsocietyatla

441、rge.Figure 2.14 Role of technology and behavioural change in emissions reductions in the NZE IEA.Allrightsreserved.Around 8% of emissions reductions stem from behavioural changes and materials efficiencyNotes:Lowcarbontechnologiesincludelowcarbonelectricitygeneration,lowcarbongasesinendusesandbiofue

442、ls. Lowcarbon technologies with the active involvement of citizens includes fuel switching,electrification and efficiency gains in enduses. Behavioural changes and materials efficiency includestransportmodeswitching,curbingexcessiveorwastefulenergyuse,andmaterialsefficiencymeasures.Threequarters of

443、the emissions reductions from behavioural changes in the NZE areachievedthroughtargetedgovernmentpoliciessupportedbyinfrastructuredevelopment,e.g. a shift to rail travel supported by highspeed railways. The remainder come fromadoptingvoluntarychangesinenergysavinghabits,mainlyinhomes.Eveninthiscase,

444、publicawarenesscampaignscanhelpshapedaytodaychoicesabouthowconsumersuseenergy.(DetailsofwhatgovernmentscandotohelpbringaboutbehaviouralchangesarediscussedinChapter4).Behaviouralchangesreduceenergyrelatedactivitybyaround1015%onaverageovertheperiodto2050intheNZE,reducingoverallglobalenergydemandbyover

445、37EJin2050(Figure2.15).In2030,around1.7GtCO2emissionsareavoided,45%ofwhichcomefromtransport,notablythroughmeasurestophaseoutcaruseincitiesandtoimprovefueleconomy.Forexample,reducingspeedlimitsonmotorwaysto100km/hreducesemissionsfromroadtransportby3%or140MtCO2in2030.Ashiftawayfromsingleoccupancycarus

446、etowardsridesharingorcyclingandwalkinginlargecitiessavesafurther185MtCO2.Around353025203020402050GtCO2LowcarbontechnologiesLowcarbontechnologieswiththeactiveinvolvementofconsumersBehaviouralchangesandmaterialsChapter 2 | A global pathway to net-zero CO emissions in 2050 69 240%ofemissions

447、savingsin2030occurinindustrybecauseofimprovementsinmaterialsefficiencyandincreasedrecycling,withthebiggestimpactscomingfromreducingwasteandimprovingthedesignandconstructionofbuildings.Theremainderofemissionssavingsin2030arefrombehaviouralchangesinbuildings,forexampleadjustingspaceheatingandcoolingte

448、mperatures.Figure 2.15 CO2 emissions and energy demand reductions from behavioural changes and materials efficiency in the NZE IEA.Allrightsreserved.By 2030, behaviour changes and materials efficiency gains reduce emissions by 1.7 Gt CO2, and energy demand by 27 EJ; reductions increase further throu

449、gh to 2050 In2050,thegrowingimportanceoflowemissionselectricityandfuelsintransportandbuildingsmeansthat90%ofemissionsreductionsareinindustry,predominantlyinthosesectorswhereitismostchallengingtotackleemissionsdirectly.Materialefficiencyalonereducesdemandforcementandsteelby20%,savingaround1700MtCO2.O

450、ftheemissionsreductions in transport in 2050, nearly 80% come from measuresto reduce passengeraviationdemand,withtheremainderfromroadtransport.Thescope,scaleandspeedofadoptionofthebehaviouralchangesintheNZEvarieswidelybetweenregions,dependingonseveralfactorsincludingtheabilityofexistinginfrastructur

451、etosupportsuchchangesanddifferencesingeography,climate,urbanisation,socialnormsandculturalvalues.Forexample,regionswithhighlevelsofprivatecarusetodayseeamoregradualshiftthanotherstowardspublictransport,sharedcaruse,walkingandcycling;airtravelisassumedtoswitchtohighspeedrailonexistingorpotentialroute

452、sonlywheretrainscouldofferasimilarjourneytime;andthepotentialformoderatingairconditioninginbuildingsandvehiclestakesintoaccountseasonaleffectsandhumidity.Wealthierregionsgenerallyhavehigherlevelsofpercapitaenergyrelatedactivity,andbehaviouralchangesplayanespeciallyimportantroleintheseregionsinreduci

453、ngexcessiveorwastefulenergyconsumption.4032242050EJ3.02.41.81.20.6203020402050GtCOTransportBuildingsIndustryEmissionsEnergy demandIEA. All rights reserved.70 International Energy Agency | Special Report MostofthebehaviouralchangesintheNZEwouldhavesomeeffectonnearlyeveryonesdailylife,butno

454、nerepresentsaradicaldeparturefromenergyreducingpracticesalreadyexperiencedinmanypartsoftheworldtoday.Forexample,inJapananawarenesscampaignhas successfully reduced cooling demand in line with the reductions assumed in manyregionsintheNZEby2040;legislationtolimiturbancarusehasbeenintroducedinmanylarge

455、cities;andspeedlimitreductionstoaround100km/h(theleveladoptedgloballyintheNZEby2030)havebeentestedintheUnitedKingdomandSpaintoreduceairpollutionandimprovesafety.Table 2.4 Key global milestones for behavioural change in the NZE SectorYearMilestoneIndustry2020 Globalaverageplasticscollectionrate=17%.2

456、030 Globalaverageplasticscollectionrate=27%. Lightweightingreducestheweightofanaveragepassengercarby10%.2050 Globalaverageplasticscollectionrate=54%. Efficiencyoffertiliseruseimprovedby10%.Transport2030 Ecodrivingandmotorwayspeedlimitsof100km/hintroduced. UseofICEcarsphasedoutinlargecities.2050 Regi

457、onalflightsareshiftedtohighspeedrailwherefeasible. Businessandlonghaulleisureairtraveldoesnotexceed2019levels.Buildings2030 Spaceheatingtemperaturesmoderatedto1920Conaverage. Spacecoolingtemperaturesmoderatedto2425Conaverage. Excessivehotwatertemperaturesreduced.2050 Useofenergyintensivematerialsper

458、unitoffloorareadecreasesby30%. Buildinglifetimeextendedby20%onaverage.Note:Ecodrivinginvolvespreemptivestoppingandstarting;ICE=internalcombustionengine.2.5.3 ElectrificationThedirectuseoflowemissionselectricityinplaceoffossilfuelsisoneofthemostimportantdriversofemissionsreductionsintheNZE,accounting

459、foraround20%ofthetotalreductionachievedby2050.Globalelectricitydemandmorethandoublesbetween2020and2050,withthelargestabsoluteriseinelectricityuseinendusesectorstakingplaceinindustry,whichregistersanincreaseofmorethan11000TWhbetween2020and2050.Muchofthisisduetotheincreasinguseofelectricityforlowandme

460、diumtemperatureheatandinsecondaryscrapbasedsteelproduction(Figure2.16).Intransport,theshareofelectricityincreasesfromlessthan2%in2020toaround45%in2050intheNZE.Morethan60%oftotalpassengercarsalesgloballyareEVsby2030(comparedwith5%ofsalesin2020),andthecarfleetisalmostfullyelectrifiedworldwideby2050(th

461、eremainderarehydrogenpoweredcars).TheincreaseinelectricpassengercarsalesgloballyoverthenexttenyearsisovertwentytimeshigherthantheincreaseinICEcarsalesoverthelastdecade.ElectrificationisslowerfortrucksbecauseitdependsonhigherChapter 2 | A global pathway to net-zero CO emissions in 2050 71 2density ba

462、tteries than those currently available on the market, especially for longhaultrucking, and on new highpower charging infrastructure: electric trucks neverthelessaccountforaround25%oftotalheavytrucksalesgloballyby2030andaroundtwothirdsin2050.Theelectrificationofshippingandaviationismuchmorelimitedand

463、onlygetsunderwayafterlargeimprovementsinbatteryenergydensity(seesection3.6)(Figure2.17).IntheNZE,demandforbatteriesfortransportreachesaround14TWhin2050,90timesmorethanin2020.Growthinbatterydemandtranslatesintoanincreasingdemandforcriticalminerals.Forexample,demandforlithiumforuseinbatteriesgrows30fo

464、ldto2030andismorethan100timeshigherin2050thanin2020(IEA,2021).Figure 2.16 Global electricity demand and share of electricity in energy consumption in selected applications in the NZE IEA.Allrightsreserved.Global electricity demand more than doubles in the period to 2050, with the largest rises to pr

465、oduce hydrogen and in industry Notes:Merchanthydrogen=hydrogenproducedbyonecompanytoselltoothers.Lightdutyvehicles=passengercarsandvans.Heavytrucks=mediumfreighttrucksandheavyfreighttrucks.Inbuildings,electricitydemandismoderatedintheNZEbyahugepushtoimprovetheefficiencyofappliances,cooling,lightinga

466、ndbuildingenvelopes.Butalargeincreaseinactivity,alongwiththewidespreadelectrificationofheatingthroughtheuseofheatpumps,meansthatelectricitydemandinbuildingsstillrisessteadilyovertheperiodreaching66%oftotalenergyconsumptioninbuildingsin2050.Alongsidethegrowthinthedirectuseofelectricityinendusesectors

467、,thereisalsoahugeincreaseintheuseofelectricityforhydrogenproduction.Merchanthydrogenproducedusingelectrolysisrequiresaround12000TWhin2050intheNZE,whichisgreaterthancurrenttotalannualelectricitydemandofChinaandtheUnitedStatescombined.25%50%75%4000800012000MerchanthydrogenHeavyindustryLightindustryHea

468、tinginbuildingsCookingLightdutyvehiclesHeavytrucksTWh202020302050202020302050Electricitydemand:Electricityshareinconsumption(rightaxis):IEA. All rights reserved.72 International Energy Agency | Special Report Figure 2.17 Battery demand growth in transport and battery energy density in the NZE IEA.Al

469、lrightsreserved.Nearly 20 battery giga-factories open every year to 2030 to satisfy battery demand for electric cars in the NZE; higher density batteries are needed to electrify long-haul trucks Notes:LiS=lithiumsulphurbattery;Whperkg=Watthoursperkilogramme.Theaccelerationofelectricitydemandgrowthfr

470、om2%peryearoverthepastdecadeto3%peryearthroughto2050,togetherwithasignificantlyincreasedshareofvariablerenewableelectricitygeneration,meansthatannualelectricitysectorinvestmentintheNZEisthreetimeshigheronaveragethaninrecentyears.Theriseinelectricitydemandalsocallsforextensive efforts to ensure the s

471、tability and flexibility of electricity supply throughdemandsidemanagement,theoperationofflexiblelowemissionssourcesofgenerationincludinghydropowerandbioenergy,andbatterystorage.Table 2.5 Key global milestones for electrification in the NZE Sector202020302050Shareofelectricityintotalfinalconsumption

472、20%26%49%IndustryShareofsteelproductionusingelectricarcfurnace24%37%53%Electricityshareoflightindustry43%53%76%TransportShareofelectricvehiclesinstock:cars1%20%86%two/threewheelers26%54%100%bus2%23%79%vans0%22%84%heavytrucks0%8%59%Annualbatterydemandforelectricvehicles(TWh)0.166.614BuildingsHeatpump

473、sinstalled(millions)1806001800Shareofheatpumpsinenergydemandforheating7%20%55%Millionpeoplewithoutaccesstoelectricity78600200400600800480203020402050WhperkgTWhperyearLonghaultrucksCars,buses,deliverytrucksBatterycelldensity(rightaxis)Solidstate(400 Whperkg)requiredforelectric longhaultruc

474、ksLiS(orother)(650Whperkg)requiredforelectricaircraftsChapter 2 | A global pathway to net-zero CO emissions in 2050 73 22.5.4 RenewablesAtagloballevel,renewableenergytechnologiesarethekeytoreducingemissionsfromelectricitysupply.Hydropowerhasbeenaleadinglowemissionsourceformanydecades,butitismainlyth

475、eexpansionofwindandsolarthattriplesrenewablesgenerationby2030andincreasesitmorethaneightfoldby2050intheNZE.Theshareofrenewablesintotalelectricitygenerationgloballyincreasesfrom29%in2020toover60%in2030andtonearly90%in2050(Figure2.18).Toachievethis,annualcapacityadditionsofwindandsolarbetween2020and20

476、50arefivetimeshigherthantheaverageoverthelastthreeyears.Dispatchablerenewablesarecriticaltomaintainelectricitysecurity,togetherwithotherlowcarbongeneration,energystorageandrobustelectricitynetworks.IntheNZE,themaindispatchable renewables globally in 2050 are hydropower (12% of generation),bioenergy(

477、5%),concentratingsolarpower(2%)andgeothermal(1%).Figure 2.18 Fuel shares in total energy use in selected applications in the NZE IEA.Allrightsreserved.Renewables are central to emissions reductions in electricity, and they make major contributions to cut emissions in buildings, industry and transpor

478、t both directly and indirectly Notes:Indirectrenewables=useofelectricityanddistrictheatproducedbyrenewables.Otherlowcarbon=nuclearpower,facilitiesequippedwithCCUS,andlowcarbonhydrogenandhydrogenbasedfuels.IEA. All rights reserved.74 International Energy Agency | Special Report Renewablesalsoplayanim

479、portantroleinreducingemissionsinbuildings,industryandtransport.Renewablescanbeusedeitherindirectly,viatheconsumptionofelectricityordistrictheatingthatwasproducedbyrenewables,ordirectly,mainlytoproduceheat.Intransport,renewablesplayanimportantindirectroleinreducingemissionsbygeneratingtheelectricityt

480、opowerelectricvehicles.Theyalsocontributetodirectemissionsreductionsthroughtheuseofliquidbiofuelsandbiomethane.Inbuildings,renewableenergyismainlyusedforwaterandspaceheating.Thedirectuseofrenewableenergyrisesfromabout10%ofheatingdemandgloballyin2020to40%in2050,aboutthreequartersoftheincreaseisinthef

481、ormofsolarthermalandgeothermal.Deepretrofitsandenergyrelatedbuildingcodesarepairedwithrenewableswheneverpossible:almostallbuildingswithavailableroofspaceandsufficientsolarinsolationareequippedwithsolarthermalwaterheatersby2050,astheyaremoreproductivepersquaremetrethansolarPVandasheatstorageinwaterta

482、nksisgenerallymorecosteffectivethanstorageofelectricity. Rooftop solar PV, which produces renewable electricity onsite, is currentlyinstalledonaround25millionrooftopsworldwide;thenumberincreasesto100millionrooftopsby2030and240millionby2050.Afurther15%ofheatinginbuildingsin2030comesindirectlyfromrene

483、wablesintheformofelectricity,andthisrisestoalmost40%in2050.Inindustry,bioenergyisthemostimportantdirectrenewableenergysourceforlowandmediumtemperatureneedsintheNZE.Solarthermalandgeothermalalsoproducelowtemperatureheatforuseinnonenergyintensiveindustriesandancillaryordownstreamprocessesinheavyindust

484、ries.Bioenergy,solarthermalandgeothermaltogetherprovideabout15%ofindustryheatdemandin2030,roughlydoubletheirsharein2010,andthisincreasesto40%in2050.Theindirectuseofrenewableenergyviaelectricityadds15%tothecontributionthatrenewablesmaketototalindustryenergyusein2050.Table 2.6 Key deployment milestone

485、s for renewables Sector202020302050ElectricitysectorRenewablesshareingeneration29%61%88%Annualcapacityadditions(GW):TotalsolarPV134630630Totalwind114390350ofwhich:Offshorewind58070Dispatchablerenewables3112090EndusessectorsRenewableshareinTFC5%12%19%HouseholdswithrooftopsolarPV(million)25100240Share

486、ofsolarthermalandgeothermalinbuildings2%5%12%Shareofsolarthermalandgeothermalinindustryfinalconsumption0%1%2%Note:TFC=totalfinalconsumption.Chapter 2 | A global pathway to net-zero CO emissions in 2050 75 22.5.5 HydrogenandhydrogenbasedfuelsTheinitialfocusforhydrogenuseintheNZEistheconversionofexist

487、ingusesoffossilenergytolowcarbonhydrogeninwaysthatdonotimmediatelyrequirenewtransmissionanddistributioninfrastructure.Thisincludeshydrogenuseinindustryandinrefineriesandpowerplants,andtheblendingofhydrogenintonaturalgasfordistributiontoendusers.Globalhydrogenuseexpandsfromlessthan90Mtin2020tomoretha

488、n200Mtin2030;theproportionoflowcarbonhydrogenrisesfrom10%in2020to70%in2030(Figure2.19).Aroundhalfoflowcarbonhydrogenproducedgloballyin2030comesfromelectrolysisandtheremainderfromcoalandnaturalgaswithCCUS,althoughthisratiovariessubstantiallybetweenregions.Hydrogenisalsoblendedwithnaturalgasingasnetwo

489、rks:theglobalaverageblendin2030includes15%ofhydrogeninvolumetricterms,reducingCO2emissionsfromgasconsumptionbyaround6%.Figure 2.19 Global hydrogen and hydrogen-based fuel use in the NZE IEA.Allrightsreserved.The initial focus for hydrogen is to convert existing uses to low-carbon hydrogen; hydrogen

490、and hydrogen-based fuels then expand across all end-uses Note:Includeshydrogenandhydrogencontainedinammoniaandsyntheticfuels.Thesedevelopmentsfacilitatearapidscalingupofelectrolysermanufacturingcapacityandtheparalleldevelopmentofnewhydrogentransportinfrastructure.Thisleadstorapidcostreductions for e

491、lectrolysers and for hydrogen storage, notably in salt caverns. Storedhydrogen is used to help balance both seasonal fluctuations in electricity demand andimbalancesthatmayarisebetweenthedemandforhydrogenanditssupplybyoffgridrenewablesystems.Duringthe2020s,thereisalsoalargeincreaseintheinstallationo

492、fenduseequipmentforhydrogen,includingmorethan15millionhydrogenfuelcellvehiclesontheroadby2030.20%40%60%80%100%05002020202520302035204020452050MtOtherRefineriesIronandsteelChemicalsOtherRefineriesIndustryShippingAviationRoadBuildingsElectricitygenerationBlendedingasgridLowcarbonshareMercha

493、ntOnsiteIEA. All rights reserved.76 International Energy Agency | Special Report After 2030, lowcarbon hydrogen use expands rapidly in all sectors in the NZE. In theelectricitysector,hydrogenandhydrogenbasedfuelsprovideanimportantlowcarbonsourceofelectricitysystemflexibility,mainlythroughretrofittin

494、gexistinggasfiredcapacitytocofirewithhydrogen,togetherwithsomeretrofittingofcoalfiredpowerplantstocofirewithammonia.Althoughthesefuelsprovideonlyaround2%ofoverallelectricitygenerationin2050,thistranslatesintoverylargevolumesofhydrogenandmakestheelectricitysectoranimportantdriverofhydrogendemand.Intr

495、ansport,hydrogenprovidesaroundonethirdoffueluseintrucksin2050intheNZE:thisiscontingentonpolicymakerstakingdecisionsthat enable the development of the necessary infrastructure by 2030. By 2050,hydrogenbasedfuelsalsoprovidemorethan60%oftotalfuelconsumptioninshipping.Ofthe530Mtofhydrogenproducedin2050,

496、around25%isproducedwithinindustrialfacilities(includingrefineries),andtheremainderismerchanthydrogen(hydrogenproducedbyonecompanytoselltoothers).Almost30%ofthelowcarbonhydrogenusedin2050takestheformofhydrogenbasedfuels,whichincludeammoniaandsyntheticliquidsandgases.Anincreasingshareofhydrogenproduct

497、ioncomesfromelectrolysers,whichaccountfor60%oftotalproductionin2050.Electrolysersarepoweredbygridelectricity,dedicatedrenewablesinregionswithexcellentrenewableresourcesandotherlowcarbonsourcessuchasnuclearpower.RollingoutelectrolysersatthepacerequiredintheNZEisakeychallengegiventhelackofmanufacturin

498、gcapacitytoday,asisensuringtheavailabilityofsufficientelectricitygenerationcapacity.GlobaltradeinhydrogendevelopsovertimeintheNZE,withlargevolumesexportedfromgasandrenewablesrichareasintheMiddleEast,CentralandSouthAmericaandAustraliatodemandcentresinAsiaandEurope.Table 2.7 Key deployment milestones

499、for hydrogen and hydrogen-based fuels Sector202020302050Totalproductionhydrogenbasedfuels(Mt)87212528Lowcarbonhydrogenproduction9150520shareoffossilbasedwithCCUS95%46%38%shareofelectrolysisbased5%54%62%Merchantproduction15127414Onsiteproduction7385114Totalconsumptionhydrogenbasedfuels(Mt)87212528Ele

500、ctricity052102ofwhichhydrogen04388ofwhichammonia0813Refineries36258Buildingsandagriculture01723Transport025207ofwhichhydrogen011106ofwhichammonia0556ofwhichsyntheticfuels0844Industry5193187Note:Hydrogenbasedfuelsarereportedinmilliontonnesofhydrogenrequiredtoproducethem.Chapter 2 | A global pathway t

501、o net-zero CO emissions in 2050 77 22.5.6 BioenergyGlobalprimarydemandforbioenergywasalmost65EJin2020,ofwhichabout90%wassolidbiomass.Some40%ofthesolidbiomasswasusedintraditionalcookingmethodswhichisunsustainable,inefficientandpolluting,andwaslinkedto2.5millionprematuredeathsin2020.Theuseofsolidbioma

502、ssinthismannerfallstozeroby2030intheNZE,toachievetheUNSustainableDevelopmentGoal7.Increasesinallformsofmodernbioenergymorethanoffsetthis,withproductionrisingfromlessthan40EJin2020toaround100EJin2050(Figure2.20).15Allbioenergyin2050comesfromsustainablesourcesandthefiguresintheNZE for total bioenergy

503、use are well below estimates of global sustainable bioenergypotential,thusavoidingtheriskofnegativeimpactsonbiodiversity,freshwatersystems,andfoodpricesandavailability(seesection2.7.2).Figure 2.20 Total bioenergy supply in the NZE IEA.Allrightsreserved.Modern bioenergy use rises to 100 EJ in 2050, m

504、eeting almost 20% of total energy needs. Global demand in 2050 is well below the assessed sustainable potential Notes:TES=Totalenergysupply.Conversionlossesoccurduringtheproductionofbiofuelsandbiogases.Modernsolidbioenergyuserisesbyabout3%eachyearonaverageto2050.Intheelectricitysector,wheredemandrea

505、ches35EJin2050,solidbioenergyprovidesflexiblelowemissionsgenerationtocomplementgenerationfromsolarPVandwind,anditremovesCO2fromtheatmospherewhenequippedwithCCUS.In2050,electricitygenerationusingbioenergyfuelsreaches3300TWh,or5%oftotalgeneration.Bioenergyalsoprovidesaround50%ofdistrictheatproduction.

506、Inindustry,wheredemandreaches20EJin2050,solidbioenergyprovideshightemperatureheatandcanbecofiredwithcoaltoreducetheemissionsintensityof15Modernbioenergyincludesbiogases,liquidbiofuelsandmodernsolidbiomassharvestedfromsustainablesources.Itexcludesthetraditionaluseofbiomass.5%10%15%20%25%2040608010020

507、0402050EJTraditionaluseofbiomassConversionlossesBiogasesLiquidbiofuelsBuildingsandagricultureIndustryElectricityModernbioenergyshareshareinTES(rightaxis)ModernsolidbioenergyIEA. All rights reserved.78 International Energy Agency | Special Report existinggenerationassets.Demandishighestfor

508、paperandcementproduction:in2050,bioenergymeets60%ofenergydemandinthepapersectorand30%ofenergydemandforcementproduction.Modernsolidbioenergydemandinbuildingsincreasestonearly10EJin2030,mostofitforuseinimprovedcookstovesasunsustainabletraditionalusesofbiomassdisappear.Bioenergyisalsoincreasinglyusedfo

509、rspaceandwaterheatinginadvancedeconomies.Householdandvillagebiogasdigestersinruralareasprovideasourceofrenewableenergyandcleancookingfornearly500millionhouseholdsby2030intheNZEandtotalbiogasuserisesto5.5EJin2050(fromunder2EJin2020).16Biomethanedemandgrowsto8.5EJ,thankstoblendingmandatesforgasnetwork

510、s,withaverageblendingratesincreasingtoabove80%inmanyregionsby2050.Halfoftotalbiomethaneuseisintheindustrysector,wherebiomethanereplacesnaturalgasasasourceofprocessheat.Thebuildingsandtransportsectorseachaccountforaroundafurther20%ofbiomethaneconsumptionin2050.Oneofthekeyadvantagesofbioenergyisthatit

511、canuseexistinginfrastructure.Forexample,biomethanecanuseexistingnaturalgaspipelinesandenduserequipment,whilemanydropinliquidbiofuelscanuseexistingoildistributionnetworksandbeusedinvehicleswithonlyminororlimitedalterations.BioLPGLPGderivedfromrenewablefeedstocksisidenticaltoconventionalLPGandsocanbeb

512、lendedanddistributedinthesameway.Sustainablebioenergyalsoprovidesavaluablesourceofemploymentandincomeforruralcommunities,reducesundueburdensonwomenoftentaskedwithfuelcollection,bringshealthbenefitsfromreducedairpollutionandproperwastemanagement,andreducesmethaneemissionsfrominefficientcombustionandt

513、hedecompositionofwaste.Liquidbiofuelconsumptionrisesfrom1.6mboe/din2020to6mboe/din2030intheNZE,mainly used in road transport. After 2030, liquid biofuels grow more slowly to around7mboe/din2050andtheiruseshiftstoshippingandaviationaselectricityincreasinglydominatesroadtransport.Almosthalfofliquidbio

514、fuelusein2050isforaviation,wherebiokeroseneaccountsforaround45%oftotalfueluseinaircraft.Bioenergy with carbon capture and storage (BECCS) plays a critical role in the NZE inoffsettingemissionsfromsectorswherethefulleliminationofemissionsisverydifficulttoachieve.In2050,around10%oftotalbioenergyisused

515、infacilitiesequippedwithCCUSandaround1.3GtCO2iscapturedusingBECCS.Around45%ofthisCO2iscapturedinbiofuelsproduction,40%intheelectricitysectorandtherestinheavyindustry,notablycementproduction.16Biogasisamixtureofmethane,CO2andsmallquantitiesofothergasesproducedbyanaerobicdigestionoforganicmatterinanox

516、ygenfreeenvironment.BiomethaneisanearpuresourceofmethaneproducedeitherbyremovingCO2andothercontaminantsfrombiogasorthroughthegasificationofsolidbiomass(IEA,2020b).Chapter 2 | A global pathway to net-zero CO emissions in 2050 79 2Table 2.8 Key deployment milestones for bioenergy 202020302050Totalener

517、gysupply(EJ)6372102Shareofadvancedbiomassfeedstock27%85%97%Moderngaseousbioenergy(EJ)2.15.413.7Biomethane0.32.38.3Modernliquidbioenergy(mboe/d)1.66.07.0Advancedbiofuels0.12.76.2Modernsolidbioenergy(EJ)325474Traditionaluseofsolidbiomass(EJ)2500Millionpeopleusingtraditionalbiomassforcooking234000Notes

518、:mboe/d=millionbarrelsofoilequivalentperday.Bioenergyfromforestplantingsisconsideredadvancedwhenforestsaresustainablymanaged(seesection2.7.2).2.5.7 Carboncapture,utilisationandstorageCCUScanfacilitatethetransitiontonetzeroCO2emissionsby:tacklingemissionsfromexistingassets;providingawaytoaddressemiss

519、ionsfromsomeofthemostchallengingsectors;providingacosteffectivepathwaytoscaleuplowcarbonhydrogenproductionrapidly;andallowingforCO2removalfromtheatmospherethroughBECCSandDACCS.IntheNZE,policiessupportarangeofmeasurestoestablishmarketsforCCUSinvestmentandtoencourageuseofsharedCO2transportandstoragein

520、frastructurebythoseinvolvedintheproductionofhydrogenandbiofuels,theoperationofindustrialhubs,andretrofittingofexistingcoalfiredpowerplants.CapturevolumesintheNZEincreasemarginallyoverthenextfiveyearsfromthecurrentlevelofaround40MtCO2peryear,reflectingprojectscurrentlyunderdevelopment,butthereisarapi

521、dexpansionoverthefollowing25yearsaspolicyactionbearsfruit.By2030,1.6GtCO2peryeariscapturedglobally,risingto7.6GtCO2in2050(Figure2.21).Around95%oftotalCO2capturedin2050isstoredinpermanentgeologicalstorageand5%isusedtoprovidesyntheticfuels.Estimatesofglobalgeologicalstoragecapacityareconsiderablyabove

522、whatisnecessarytostorethecumulativeCO2capturedandstoredintheNZE.Atotalof2.4GtCO2iscapturedin2050fromtheatmospherethrough bioenergy with CO2 capture and direct air capture, of which 1.9GtCO2ispermanentlystoredand0.5GtCO2isusedtoprovidesyntheticfuelsinparticularforaviation.EnergyrelatedandprocessCO2em

523、issionsinindustryaccountforalmost40%oftheCO2capturedin2050intheNZE.CCUSisparticularlyimportantforcementmanufacturing.AlthougheffortsarepursuedintheNZEtoproducecementmoreefficiently,CCUSremainscentraltoeffortstolimittheprocessemissionsthatoccurduringcementmanufacturing.Theelectricitysectoraccountsfor

524、almost20%oftheCO2capturedin2050(ofwhicharound45%is from coalfired plants, 40% from bioenergy plants and 15% from gasfired plants).CCUSequippedpowerplantscontributejust3%oftotalelectricitygenerationin2050butthevolumesofCO2capturedarecomparativelylarge.Inemergingmarketanddevelopingeconomies,wherelarge

525、numbersofcoalpowerplantshavebeenbuiltrelativelyrecently,IEA. All rights reserved.80 International Energy Agency | Special Report retrofits play an important role where there are storage opportunities. In advancedeconomies,gasfiredplantswithCCUSplayabiggerrole,providingdispatchableelectricityatrelati

526、velylowcostinregionswithcheapnaturalgasandexistingnetworks.In2030,around50GWofcoalfiredpowerplants(4%ofthetotalatthattime)and30GWofnaturalgaspowerplants(1%ofthetotal)areequippedwithCCUS,andthisrisesto220GWofcoal(almosthalfofthetotal)and170GWofnaturalgas(7%ofthetotal)capacityin2050.Afurther30%ofCO2ca

527、pturedin2050comesfromfueltransformation,includinghydrogenandbiofuelsproductionaswellasoilrefining.Theremaining10%isfromDAC,whichisrapidlyscaledupfromseveralofpilotprojectstodayto90MtCO2peryearin2030andjustunder1GtCO2peryearby2050.Figure 2.21 Global CO2 capture by source in the NZE IEA.Allrightsreser

528、ved.By 2050, 7.6 Gt of CO2 is captured per year from a diverse range of sources. A total of 2.4 Gt CO2 is captured from bioenergy use and DAC, of which 1.9 Gt CO2 is permanently stored. Table 2.9 Key global milestones for CCUS 202020302050TotalCO2captured(MtCO2)4016707600CO2capturedfromfossilfuelsan

529、dprocesses3913255245Power3340860Industry33602620Merchanthydrogenproduction34551355Nonbiofuelsproduction30170410CO2capturedfrombioenergy12551380Power090570Industry015180Biofuelsproduction1150625Directaircapture090985Removal07063024682020202520302035204020452050GtCODirectaircaptureHydrogenproductionBi

530、ofuelsproductionOtherIndustrycombustionIndustryprocessesBioenergyGasCoalElectricitysectorIndustryFuelsupplyOtherChapter 2 | A global pathway to net-zero CO emissions in 2050 81 22.6 InvestmentTheradicaltransformationoftheglobalenergysystemrequiredtoachievenetzeroCO2emissionsin2050hingesonabigexpansi

531、onininvestmentandabigshiftinwhatcapitalisspenton.TheNZEexpandsannualinvestmentinenergyfromjustoverUSD2trilliongloballyonaverageoverthelastfiveyearstoalmostUSD5trillionby2030andtoUSD4.5trillionby2050(Figure2.22).17TotalannualcapitalinvestmentinenergyintheNZErisesfromaround2.5%ofglobalGDPinrecentyears

532、toabout4.5%in2030beforefallingbackto2.5%by2050.Figure 2.22 Annual average capital investment in the NZE IEA.Allrightsreserved.Capital investment in energy rises from 2.5% of GDP in recent years to 4.5% by 2030; the majority is spent on electricity generation, networks and electric end-user equipment

533、 Notes:Infrastructureincludeselectricitynetworks,publicEVcharging,CO2pipelinesandstoragefacilities,directaircaptureandstoragefacilities,hydrogenrefuellingstations,andimportandexportterminalsforhydrogen,fossilfuelspipelinesandterminals.Enduseefficiencyinvestmentsaretheincrementalcostofimprovingtheene

534、rgyperformanceofequipmentrelativetoaconventionaldesign.Electricitysystemsincludeelectricitygeneration,storageanddistribution,andpublicEVcharging.Electrificationinvestmentsincludespending in batteries for vehicles, heat pumps and industrial equipment for electricitybased materialproductionroutes.Thes

535、hiftinwhatcapitalisspentonleadstoannualinvestmentinelectricitygenerationrisingfromjustoverUSD500billionoverthelastfiveyearstomorethanUSD1600billionin2030,beforefallingbackasthecostofrenewableenergytechnologiescontinuestodecline.Annualnuclearinvestmentrisestoo:itmorethandoublesby2050comparedwithcurre

536、ntlevels.AnnualinvestmentinfuelsupplyhoweverdropsfromaboutUSD575billiononaverageover17InvestmentlevelspresentedinthisreportincludeabroaderaccountingofefficiencyimprovementsinbuildingsthanreportedintheIEAWorldEnergyInvestment(IEA,2020c)andsodifferfromthenumberspresentedthere.40205020302040

537、2050TrillionUSD(2019)OtherFossilfuelsCCUSHydrogenElectricitysystemElectrificationEfficiencyOtherrenewablesBioenergyBuildingsTransportIndustryInfrastructureElectricitygenerationFuelproductionBysectorBytechnologyarea201620201620TechnologyareaSectorIEA. All rights reserved.82 International Energy Agenc

538、y | Special Report thelasthalfdecadetoUSD315billionin2030andUSD110billionin2050.Theshareoffossilfuelsupplyintotalenergysectorinvestmentdropsfromits25%levelinrecentyearstojust7%by2050:thisispartlyoffsetbytheriseinspendingonlowemissionsfuelsupply,suchashydrogen,hydrogenbasedfuelsandbioenergy.Annualinv

539、estmentinthesefuelsincreasestonearlyUSD140billionin2050.InvestmentintransportincreasessignificantlyintheNZEfromUSD150peryearinrecentyearstomorethanUSD1100billionin2050:thisstemsmainlyfromtheupfrontcostofelectriccarscomparedwithconventionalvehiclesdespitethedeclineinthecostofbatteries.Bytechnologyare

540、a,electrificationisthedominantfocusintheNZE.Inadditiontomoreinvestmentinelectricitygeneration,thereisahugeincreaseininvestmentinexpansionandmodernisation of electricity networks. Annual investment rises from USD260billion onaverageinrecentyearstoaroundUSD800billionin2030andremainsaboutthatlevelto205

541、0.Suchinvestmentisneededtoensureelectricitysecurityinthefaceofrisingelectricitydemandandtheproportionofvariablegenerationinthepowermix.Thereisalsoalargeincreaseininvestmentintheelectrificationofendusesectors,whichincludesspendingonEV batteries, heat pumps and electricitybased industrial equipment. I

542、n addition toinvestmentinelectrification,thereisamoderateincreaseininvestmentinhydrogento2030asproductionfacilitiesarescaledup,andlargerincreasesafterashydrogenuseintransportexpands:annualinvestmentinhydrogen,includingproductionfacilities,refuellingstationsandenduserequipment,reachesUSD165billionin2

543、030andoverUSD470billionin2050.There is also an increase in global investment in CCUS (annual investment exceedsUSD160billionby2050andinefficiency(aroundUSD640billionannualinvestmentby2050,mostlyfordeepbuildingretrofitsandefficientappliancesintheindustryandbuildingssectors).Financingtheinvestmentneed

544、edintheNZEinvolvesredirectingexistingcapitaltowardscleanenergytechnologiesandsubstantiallyincreasingtheoveralllevelofinvestmentinenergy.Mostofthisincreaseininvestmentcomesfromprivatesources,mobilisedbypublicpoliciesthatcreateincentives,setappropriateregulatoryframeworksandreformenergytaxes.However,d

545、irectgovernmentfinancingisalsoneededtoboostthedevelopmentofnewinfrastructureprojectsandtoaccelerateinnovationintechnologiesthatareinthedemonstrationorprototypephasetoday.Projectsinmanyemergingmarketanddevelopingeconomies are often relatively reliant on public financing, and policies that ensure apre

546、dictableflowofbankableprojectshaveanimportantroleinboostingprivateinvestmentintheseeconomies,asdoesthescalingupofconcessionaldebtfinancingandtheuseofdevelopmentfinance.ThereareextensivecrosscountrycooperationeffortsintheNZEtofacilitatetheinternationalflowofcapital.Thelargeincreaseincapitalinvestment

547、intheNZEispartlycompensatedforbyloweroperatingexpenditure.Operatingcostsaccounttodayforalargeshareofthetotalcostofupstreamfuelsupplyprojectsandfossilfuelgenerationprojects:thecleantechnologiesthatplayanincreasingroleintheNZEarecharacterisedbymuchloweroperatingcosts.Chapter 2 | A global pathway to ne

548、t-zero CO emissions in 2050 83 22.7 KeyuncertaintiesTheroadtonetzeroemissionsisuncertainformanyreasons:wecannotbesurehowunderlying economic conditions will change, which policies will be most effective, howpeopleandbusinesseswillrespondtomarketandpolicysignals,orhowtechnologiesandtheircostswillevolv

549、efromwithinoroutsidetheenergysector.TheNZEthereforeisjustonepossible pathway to achieve netzero emissions by 2050. Against this background, thissectionlooksatwhattheimplicationswouldbeiftheassumptionsintheNZEturnouttobeoffthemarkwithrespecttobehaviouralchange,bioenergyandCCUSforfossilfuels.Thesethre

550、eareaswereselectedbecausetheassumptionsmadeabouttheminvolveahighdegreeofuncertaintyandbecauseoftheircriticalcontributionstoachievenetzeroemissionsby2050.Figure 2.23 Additional electricity demand in 2050 and additional investment between 2021-2050 for selected areas of uncertainty IEA.Allrightsreserv

551、ed.The absence of behaviour change, restrictions on bioenergy use and failure to develop fossil fuel CCUS would each raise investment to meet net-zero emissions by USD 4-15 trillion Notes:NobehaviourassumesnoneofthebehaviouralchangesincludedintheNZE.Restrictedbioenergyassumesnoincreaseinlanduseforbi

552、oenergyproduction.LowfossilCCUSassumesnoincreaseinfossilfuelbasedCCUSapartfromprojectsalreadyapprovedorunderconstruction.Ouranalysisclearlyhighlightsthatmorepessimisticassumptionswouldaddconsiderablytoboththecostsanddifficultyofachievingnetzeroemissionsby2050(Figure2.23). Behaviouralchangesareimport

553、antinreducingenergydemandintransport,buildingsandindustry.IfthechangesinbehaviourassumedintheNZEwerenotattainable,emissionswouldbearound2.6GtCO2higherin2050.AvoidingtheseemissionsthroughtheuseofadditionallowcarbonelectricityandhydrogenwouldcostanadditionalUSD4trillion.4%8%12%16%20%3581013Nobehaviour

554、RestrictedbioenergyLowfossilCCUSThousandTWhIncreasefromNZE(rightaxis)Electricitydemand4%8%12%16%20%481216NobehaviourRestrictedbioenergyLowfossilCCUSTrillionUSD(2019)InvestmentIEA. All rights reserved.84 International Energy Agency | Special Report Bioenergyusegrowsby60%between2020and2050intheNZEandl

555、anduseforitspropagationincreasesbyaround25%.Bioenergyusein2050intheNZEiswellbelowcurrentbestestimatesofglobalsustainablebioenergypotential,butthereisahighdegreeofuncertaintyconcerningthislevel.Iflanduseforbioenergyremainsattodayslevel, bioenergy use in 2050 would be around 10% lower, and achieving n

556、etzeroemissionsin2050wouldrequireUSD4.5trillionextrainvestment. AfailuretodevelopCCUSforfossilfuelswouldsubstantiallyincreasetheriskofstrandedassetsandwouldrequirearoundUSD15trillionofadditionalinvestmentinwind,solarandelectrolysercapacitytoachievethesamelevelofemissionsreductions.Itcouldalsocritica

557、llydelayprogressonBECCSandDACCS:ifthesecannotbedeployedatscale,thenachievingnetzeroemissionsby2050wouldbeverymuchharder.2.7.1 BehaviouralchangeImpactofbehaviouralchangesinselectedsectorsintheNZEChanges in the behaviour of energy consumers play an important role in cutting CO2emissionsandenergydemand

558、growthintheNZE.Behaviouralchangesreduceglobalenergydemandby37EJin2050,a10%reductioninenergydemandatthattime,andwithoutthemcumulativeemissionsbetween2021and2050wouldbearound10%higher(Figure2.24).Behaviouralchangeplaysaparticularlyimportantroleinthetransportsector.Figure 2.24 Reduction in total final

559、consumption due to behavioural changes by fuel in the NZE IEA.Allrightsreserved.The impact of behaviour changes and materials efficiency on final energy consumption increases over time Note:Otherincludescoal,hydrogen,geothermal,solarthermal,syntheticoilandsyntheticgas.Passengeraviation.Demandwouldgr

560、owmorethanthreefoldgloballybetween2020and2050intheabsenceoftheassumedchangesinbehaviourintheNZE.About60%ofthis12%9%6%3%4030200402050EJOilNaturalgasElectricityHeatModernbioenergyOtherChangeinfinalenergyconsumption(rightaxis)Chapter 2 | A global pathway to net-zero CO emissions in 2050 85 2

561、growth would occur in emerging market and developing economies. In the NZE, threechangesleadtoa50%reductioninemissionsfromaviationin2050,whilereducingthenumberofflightsbyonly12%(Figure2.25). Keepingairtravelforbusinesspurposesat2019levels.Althoughbusinesstripsfelltoalmostzeroin2020,theyaccountedforj

562、ustoveronequarterofairtravelbeforethepandemic.Thisavoidsaround110MtCO2in2050intheNZE. Keepinglonghaulflights(morethansixhours)forleisurepurposesat2019levels.Emissionsfromanaveragelonghaulflightare35timesgreaterthanfromaregionalflight(lessthanonehour).Thisaffectslessthan2%offlightsbutavoids70MtCO2in2

563、050. Ashifttohighspeedrail.Theopportunitiesforshiftingregionalflightstohighspeedrailvarybyregion.Globally,weestimatethataround15%ofregionalflightsin2019couldhavebeenshiftedgivenexistingrailinfrastructure;futurehighspeedraillinesensurethatby2050around17%couldbeshifted(IEA,2019).18Thiswouldreduceemiss

564、ionsbyaround45MtCO2in2050(highspeedtrainsgeneratenoemissionsin2050intheNZE).Figure 2.25 Global CO2 emissions from aviation and impact of behavioural changes in the NZE IEA.Allrightsreserved.Demand for passenger aviation is set to grow significantly by 2050, but behavioural changes reduce emissions b

565、y 50% in 2050 despite reducing flights by only 12% Notes:Longhaul=morethan6hourflight;mediumhaul=16hourflight;regional=lessthan1hour.Businessflights=tripsforworkpurposes;leisureflights=tripsforleisurepurposes.Averagespeedsvarybyflightdistanceandrangefrom680750km/h.18Thisassumesthat:newrailroutesavoi

566、dwaterbodiesandtunnellingthroughelevatedterrain;traveltimesare similar to aviation; and centres of demand are sufficiently large to ensure that highspeed rail iseconomicallyviable.204060801000.20.40.60.81.0201920202050GtCO2LonghaulMediumhaulRegional#REF!CaplonghaulCapbusinessShifttohighspeedMillionf

567、lightsEmissionsreductionsEmissions50%(rightaxis)leisureflightsflightsrailBehaviourreductionsIEA. All rights reserved.86 International Energy Agency | Special Report Caruse.AvarietyofnewmeasuresthataimtoreducetheuseofcarsincitiesandoverallcarownershiplevelsareassumedintheNZE.Theyleadtorapidgrowthinth

568、eridesharemarketinurbanareas,aswellasphasingoutpollutingcarsinlargecitiesandreplacingthemwithcycling,walkingandpublictransport.ThetimingofthesechangesintheNZEdependsoncitieshavingthenecessaryinfrastructureandpublicsupporttoensureashiftawayfromprivatecaruse.Between2050%ofcartripsareshiftedtobuses,dep

569、endingonthecityinquestion, with the remainder replaced by cycling, walking and public transport. Thesechanges reduce emissions from cars in cities by more than 320MtCO2 in total in themid2030s(Figure2.26).Theirimpactonemissionsfadesovertimeascarsareincreasinglyelectrified,buttheystillhaveasignifican

570、timpactoncurbingenergyusein2050.Figure 2.26 Global CO2 emissions savings and car ownership per household due to behavioural change in the NZE IEA.Allrightsreserved.Policies discouraging car use in cities lead to rapid reductions in CO2 emissions and lower car ownership levels, though the impact dimi

571、nishes over time as cars are electrified Thegradualmoveawayfromcarsincitiesalsohasanimpactoncarownershiplevels.Surveydataindicatesthatcarshareschemesandtheprovisionofpublictransportreducescarownershipbyupto35%,withthebiggestchangestakingplaceinmultiplecarhouseholds(Jochemetal.,2020;Martin,Shaheenand

572、Lidiker,2010).Withoutbehaviouralchanges,35%ofhouseholdswouldhaveacarin2050;withbehaviouralchangesthissharefallstoaround20%intheNZE,andtwocarhouseholdsfallfrom13%ofthetotaltolessthan5%.ThechangingpatternsofmobilityincitiesinNZEhaveimplicationsformaterialsdemand.Reduced car ownership leads to a small

573、drop in steel demand in 2050, saving around40MtCO2insteelproduction.Increasedcyclingwouldneedtobesupportedbybuildinganestimated 80000km of new cycle lanes globally over the period to 2050, generatingincreaseddemandforcementandbitumen.Thiseffectissmall,however:theextraemissionsassociatedwiththiswould

574、belessthan5%oftheemissionsavoidedbylowercaruse.5005020203020402050RidesharingCyclingandwalkingBusesMtCO2CO2emissionssavings20%40%60%80%100%0cars1car2cars3+carsBeforebehaviourchangeAfterbehaviourchangeCarsperhouseholdin2050Chapter 2 | A global pathway to net-zero CO emissions in 2050 87 2H

575、owtobringaboutthebehaviouralchangesinNZERegulationsandmandatescouldenableroughly70%oftheemissionssavedbybehaviouralchangesintheNZE.Examplesinclude: Upperspeedlimits,whicharereducedovertimeintheNZEfromtheircurrentlevelsto100km/h,cuttingemissionsfromroadvehiclesby3%in2050. Appliancestandards,whichmaxi

576、miseenergyefficiencyinthebuildingssector. Regulationscoveringheatingtemperaturesinofficesanddefaultcoolingtemperaturesforairconditioningunits,whichreduceexcessivethermaldemand. Changesinitiallytackledbymarketbasedmechanisms,e.g.swappingregionalflightsforhighspeedrail,19whichcanbeaddressedbyregulatio

577、novertimetomirrorchangesinpublicsentimentandconsumernorms.Marketbasedinstrumentsuseamixoffinancialincentivesanddisincentivestoinfluencedecisionmaking.TheycouldenablearoundtwothirdsoftheemissionssavedbybehaviouralchangesintheNZE.Examplesinclude: Congestionpricingandtargetedinterventionsdifferentiated

578、byvehicletype,20suchaschargesaimedatthemostpollutingvehicles,orpreferentialparkingforcleancars. Transportdemandmeasuresthatreducetravel,suchasfueltaxesanddistancebasedvehicleinsuranceandregistrationfees(Byars,WeiandHandy,2017). Informationmeasuresthathelpconsumerstodrivechange,suchasmandatorylabelli

579、ngofembodiedorlifecycleemissionsinmanufacturingandarequirementforcompaniestodisclosetheircarbonemissions.Informationandawarenessmeasurescouldenablearound30%oftheemissionssavedbybehaviouralchangesintheNZE.Examplesinclude: Personalisedandrealtimetravelplanninginformation,whichfacilitatesaswitchtowalki

580、ng,cyclingandpublictransport. Productlabellingandpublicawarenesscampaignsincombination,whichhelpmakerecyclingwidespreadandhabitual. Comparisons with consumption patterns of similar households, which can reducewastefulenergyusebyupto20%(Aydin,BrounenandKok,2018).NotallthebehaviouralchangesintheNZEwou

581、ldbeequallyeasytoachieveeverywhere,andpolicyinterventionswouldneedtodrawoninsightsfrombehaviouralscienceandtakeintoaccountexistingbehaviouralnormsandculturalpreferences.Somebehaviouralchangesmaybemoresociallyacceptablethanothers.CitizenassembliesintheUnitedKingdomand19Alawbanningdomesticflightswhere

582、arailalternativeofundertwoandahalfhoursexistshasbeenproposedinFrance(AssembleeNationale,2021).20Congestionchargingiscurrentlyusedin11majorcitiesandhasbeenshowntoreducetrafficvolumesbyupto27%.Lowemissionszoneschargevehiclestoenterurbanzonesbasedvehicletypeandcurrentlyexistin15countries(TFL,2021;Tools

583、ofChange,2014;EuropeanCommission,2021).IEA. All rights reserved.88 International Energy Agency | Special Report Franceindicatealargelevelofsupportfortaxesonfrequentandlongdistanceflyersandforbanningpollutingvehiclesfromcitycentres;conversely,measuresthatlimitcarownershiporreducespeedlimitshavegained

584、lessacceptance(ConventionCitoyennepourleClimat,2021;ClimateAssemblyUK,2020).Behaviouralchangeswhichreduceenergyuseinhomesmaybeparticularlywellsupported:arecentsurveyshowed85%supportforlinedryingclothesandswitchingoffappliances,andonly20%ofpeoplefeltthatreducingtemperaturesettingsinhomeswasundesirabl

585、e(NewgateResearchandCambridgeZero,2021).Table 2.10 Key behavioural changes in the NZE PolicyoptionsRelatedpolicygoalsCosteffectivenessTimelinessSocialacceptabilityCO2emissionsimpactLowcarcities PhaseoutICEcarsfromlargecities. Rideshareallurbancartrips. Lowemissionszones. Accessrestrictions. Parkingr

586、estrictions. Registrationcaps. Parkingpricing. Congestioncharges. Investmentincyclinglanesandpublictransportation. Airpollutionmitigation. Publichealth. Reducedcongestion. Urbanspace. Beautificationandliveability.Fuelefficientdriving Reducemotorwayspeedstolessthan100km/h. Ecodriving. Raiseairconditi

587、oningtemperatureincarsby3C. Speedlimits. Realtimefuelefficiencydisplays. Awarenesscampaigns. Roadsafety. Reducednoisepollution.Reduceregionalflights Replaceallflights1hwherehighspeedrailisafeasiblealternative. Highspeedrailinvestment. Subsidiesforhighspeedrailtravel. Pricepremiums. Lowerairpollution

588、. Lowernoisepollution.Reduceinternationalflights Keepairtravelforbusinesspurposesat2019levels. Keeplonghaulflightsforleisureat2019levels. Awarenesscampaigns. Pricepremiums. Corporatetargets. Frequentflyerlevies. Lowerairpollution. Lowernoisepollution.Spaceheating Targetaveragesetpointtemperaturesof1

589、920C. Awarenesscampaigns. Consumptionfeedback. Corporatetargets. Publichealth. Energyaffordability.Spacecooling Targetaveragesetpointtemperaturesof2425C. Awarenesscampaigns. Consumptionfeedback. Corporatetargets. Publichealth. Energyaffordability.=poormatch=neutralmatch=goodmatchNotes:Largecities=ci

590、tiesover1millioninhabitants.ICE=internalcombustionengine.CO2emissionsimpact=cumulativereductions20202050.Ecodriving=earlyupshiftingaswellasavoidingsuddenacceleration,stopsoridling.Thenumberofjobsthatcanbedoneathomevariesconsiderablybyregion,globally,anaverageof20%ofjobscanbedoneathome.Chapter 2 | A

591、global pathway to net-zero CO emissions in 2050 89 2ThebehaviouralchangesintheNZEwouldbringwiderbenefitsintermsofairpollutionincities,roadsafety,noisepollution,congestionandhealth.Attitudestopolicyinterventionscanchangequicklywhencobenefitsbecomeapparent.Forexample,supportforcongestioncharginginStoc

592、kholmjumpedfromlessthan40%whentheschemewasintroducedtoaround70%threeyearslater;asimilartrendwasseeninSingapore,Londonandothercities,allofwhichexperienceddeclinesinairpollutionaftertheintroductionofcharging(ToolsofChange,2014;DEFRA,2012).Arenetzeroemissionsby2050stillpossiblewithoutbehaviouralchange?

593、IfthebehaviouralchangesdescribedintheNZEwerenottomaterialise,finalenergyusewouldbe27EJandemissions1.7GtCO2higherin2030,andtheywouldbe37EJand2.6GtCO2higherin2050.Thiswouldfurtherincreasethealreadyunprecedentedrampupneededinlowcarbontechnologies.TheshareofEVsintheglobalcarfleetwouldneedtoincreasefroma

594、round20%in2030to45%toensurethesamelevelofemissionsreductions(Figure2.27).Achievingthesamereductioninemissionsinhomeswouldrequireelectricheatpumpssalestoreach680millionin2030(comparedwith440millionintheNZE).Withoutgainsinmaterialsefficiency,theshareoflowcarbonprimarysteelproductionwouldneedtobemoreth

595、antwiceashighin2030asintheNZE.In2050,theuseofsustainableaviationfuelswouldalsoneedtoriseto7mboe/d(comparedwith5mboe/dintheNZE).Emissionsfromcementandsteelproductionwouldbe1.7GtCO2higherin2050thanintheNZE,andsorequireincreaseddeploymentofCCUSinindustry,deploymentofelectricarcfurnacesandmoreuseoflowca

596、rbonhydrogen.Figure 2.27 Share of low-carbon technologies and fuels with and without behavioural change in 2030 in the NZE IEA.Allrightsreserved.In the absence of behavioural changes, the share of low-emissions technologies in end-uses in 2030 would need to be much larger to achieve the same emissio

597、ns as in the NZE Notes:Electriccars=shareofelectriccarsontheroadglobally.Sustainableaviationfuels=biojetkeroseneandsyntheticjetkerosene.Lowcarbonsteelreferstoprimarysteelproduction.10%20%30%40%50%ElectriccarsHeatpumpsinresidentialbuildingsLowcarbonsteelSustainableaviationfuelsNZEAdditionalwithoutbeh

598、aviourchanges2020IEA. All rights reserved.90 International Energy Agency | Special Report 2.7.2 BioenergyandlandusechangeModernformsofbioenergyplayakeyroleinachievingnetzeroemissionsintheNZE.Bioenergyisaversatilerenewableenergysourcethatcanbeusedinallsectors,anditcanoften make use of existing transm

599、ission and distribution infrastructure and enduserequipment.Butthereareconstraintsonexpandingthesupplyofbioenergy:withfinitepotential for bioenergy production from waste streams, there are possible tradeoffsbetweenexpandingbioenergyproduction,achievingsustainabledevelopmentgoalsandavoidingconflictsw

600、ithotherlanduses,notablyfoodproduction.ThelevelofbioenergyuseintheNZEtakesaccountoftheseconstraints:bioenergydemandin 2050 is around 100EJ. The global sustainable bioenergy potential in 2050 has beenassessedtobeatleast100EJ(Creutzig,2015)andrecentassessmentsestimateapotentialbetween 150170EJ when in

601、tegrating relevant UN Sustainable Development Goals(Frank,2021; IPCC, 2019; IPCC, 2014; Wu, 2019). However, there is a high degree ofuncertainty over the precise levels of this potential. Using modelling developed incooperation with IIASA, here we examine the implications for achieving netzero CO2em

602、issionsby2050iftheavailablelevelsofsustainablebioenergyweretobelower.Wealsoexamine what would need to be done to achieve large reductions in emissions fromagriculture,forestryandotherlanduse(AFOLU).EnsuringasustainablesupplyofbioenergyMost liquid biofuels produced today come from dedicated bioenergy

603、 crops such assugarcane,cornoroilcrops,oftenknownasconventionalbiofuels.Theexpandeduseoffeedstocksandarablelandtoproducethesebiofuelscanconflictwithfoodproduction.IntheNZE,thereisashifttowardstheuseofsustainable,certifiedagriculturalproductsandwood. Biofuel production processes in the NZE use advanc

604、ed conversion technologiescoupledwithCCUSwherepossible(seesection3.3.2).Theemphasisisalsoonadvancedbioenergyfeedstocks,includingwastestreamsfromotherprocesses,shortrotationwoodycrops and feedstocks that do not require the use of arable land. Advanced bioenergyaccounts for the vast majority of bioene

605、rgy supply in the NZE by 2050. The use ofconventionalenergycropsforbiofuelproductiongrowsfromaround9EJin2020toaround11EJin2030,butthenfallsby70%to3EJin2050(includingfeedstocksconsumedinthebiofuelproductionprocesses).Advancedbioenergyfeedstocksthatdonotrequirelandincludeorganicwastestreamsfromagricul

606、tureandindustry,andwoodyresiduesfromforestharvestingandwoodprocessing.InvestmentincomprehensivewastecollectionandsortingintheNZEunlocksaround45EJofbioenergysupplyfromvariousorganicwastestreamswhichisprimarilyusedtoproducebiogasesandadvancedbiofuels(Figure2.28).Woodyresiduesfromwoodprocessingandfores

607、tharvestingprovideafurther20EJofbioenergyin2050intheNZElessthanhalfofcurrentbestestimatesofthetotalsustainablepotential.BioenergycanalsobeproducedChapter 2 | A global pathway to net-zero CO emissions in 2050 91 2fromdedicatedshortrotationwoodycrops(25EJofbioenergysupplyin2050).21Sustainablymanagedfo

608、restryfuelwoodorplantations22andtreeplantingsintegratedwithagriculturalproductionviaagroforestrysystemsthatdonotconflictwithfoodproductionorbiodiversityprovidejustover10EJofbioenergyin2050.Figure 2.28 Global bioenergy supply by source in the NZE IEA.Allrightsreserved.Bioenergy use increases by aroun

609、d 60% between 2020 and 2050, while shifting away from conventional feedstocks and the traditional use of biomass Note:Organicwastestreamsincludeagriculturalresidues,foodprocessing,industrialandmunicipalorganicwastestreams;theydonotrequirelandarea.Source:IEAanalysisbasedonIIASAdata.Thetotallandareade

610、dicatedtobioenergyproductionintheNZEincreasesfrom330millionhectares(Mha)in2020to410Mhain2050.In2050,around270Mhaisforest,representingaroundonequarterofthetotalareaofglobalmanagedforests,andaround5%oftotalforestarea.Thereis130Mhaoflandusedforshortrotationadvancedbioenergycropsin2050and10Mhaforconvent

611、ionalbioenergycrops.ThereisnooverallincreaseincroplanduseforbioenergyproductionintheNZEfromtodayslevelandnobioenergycropsaredevelopedonforestedlandintheNZE.23Aswellasallowingamuchgreaterlevelofbioenergycropproductiononmarginallands,woodyenergycropscanproducetwiceasmuchbioenergyperhectareasconvention

612、albioenergycrops.21Woodyshortrotationcoppicecropsgrownoncropland,pasturelandormarginallandsnotsuitedtofoodcrops.22Sustainableforestrymanagementensuresthatthecarbonstockandcarbonabsorptioncapabilityoftheforestisexpandedorremainsunchanged.23Ofthe140Mhalandusedforbioenergycropsin2050,70Mhaaremarginalla

613、ndsorlandcurrentlyusedforlivestockgrazingand70Mhaarecropland.Thereisa60Mhaincreaseincroplanduseforwoodycropsto2050intheNZEbutthisisoffsetbyareductionincroplanduseforproducingconventionalbiofuelfeedstocks.20406080203020402050EJForestryplantingsShortrotationwoodycropsForestandwoodresiduesOr

614、ganicwastestreamsTraditionaluseofbiomassConventionalbioenergycropsIEA. All rights reserved.92 International Energy Agency | Special Report TotallanduseforbioenergyintheNZEiswellbelowestimatedrangesofpotentiallandavailabilitythattakefullaccountofsustainabilityconstraints,includingtheneedtoprotectbiod

615、iversityhotspotsandtomeettheUNSustainableDevelopmentGoal15onbiodiversityandlanduse.Thecertificationofbioenergyproductsandstrictcontrolofwhatlandcanbeconvertedtoexpandforestryplantationsandwoodyenergycropsneverthelessiscriticaltoavoidlanduseconflictissues.Certificationisalsocriticaltoensuretheintegri

616、tyofCO2offsets(seeChapter1),theuseofwhichshouldbecarefullymanagedandrestrictedtosectorsthatlackalternativemitigationoptions.Arelatedlanduseissueishowtotackleemissionsthatarisefromoutsidetheenergysector(Box2.3).Box 2.3 Balancing emissions from land use, agriculture and forestry Tolimittheglobaltemper

617、aturerise,allsourcesofGHGemissionsneedtodeclinetoclosetozeroortobeoffsetwithCDR.TheenergysectoraccountedforaroundthreequartersoftotalGHGemissionsinrecentyears.ThelargestsourceofGHGemissionsotherthantheenergysectorisagriculture,forestryandotherlanduse(AFOLU),whichproducedbetween 1012GtCO2eq net GHG e

618、missions in recent years.24 CO2 emissions fromAFOLUwerearound56GtCO2,andnitrousoxideandmethaneemissionswerearound56GtCO2eq(IPCC,2019).Options to reduce emissions from AFOLU and enhance removals include: haltingdeforestation;improvingforestmanagementpractices;institutingfarmingpracticesthatincreaseso

619、ilcarbonlevels;andafforestation.Anumberofcompanieshaverecentlyexpressedinterestinthesesortsofnaturebasedsolutionstooffsetemissionsfromtheiroperations(seeChapter1).Forafforestation,convertingaround170Mha(roughlyhalfthesizeofIndia)toforestswouldsequesteraround1GtCO2annuallyby2050.Achievingnetzeroenerg

620、yrelatedandindustrialprocessCO2emissionsby2050intheNZEdoesnotrelyonanyoffsetsfromoutsidetheenergysector.ButcommensurateactiononAFOLUwouldhelplimitclimatechange.TheenergysectortransformationintheNZEwouldreduceCO2emissionsfromAFLOUin2050byaround150MtCO2giventheswitchawayfromconventionalcropsandtheincr

621、easeinshortrotationadvancedbioenergycropproductiononmarginallandsandpastureland.ToreduceemissionsfromAFOLUfurtherwouldrequirereducingdeforestationbytwothirdsby2050,institutingimprovedforestmanagementpracticesandplantingaround250Mhaofnewforests.ThecombinedimpactofthesechangeswouldreduceCO2emissionsfr

622、omAFOLUtozeroby2040 and absorb 1.3GtCO2 annually by 2050. In this case, cumulative AFOLU CO2emissionsbetween2020and2050wouldbearound40GtCO2.NonCO2emissionsfromlivestock,aswellasotheragriculturalemissions,maybemoredifficulttomitigategiventhelinkbetweenlivestockproductionandnitrousoxideandmethane emis

623、sions. Changes to farming practices and technology improvements,24AFOLUemissionsareemissionsfromanthropogenicactivitiesanddonotincludeCO2emissionsremovalfromtheatmospherebynaturallandsinks.Chapter 2 | A global pathway to net-zero CO emissions in 2050 93 2includingchangestoanimalfeed,couldhelptoreduc

624、etheseemissions,butitmaybenecessarytouseafforestationtooffsettheseemissionsentirely.Analternativecouldbetoreducetheseemissionsbyreducingthedemandforlivestockproducts.Forexample,weestimatethatreducingmeatconsumptioninhouseholdswiththehighestlevelsofpercapitaconsumptiontodaytotheglobalaveragelevelwoul

625、dreduceGHGemissionsbymorethan1GtCO2eqin2050.Lowerdemandforlivestockproductswouldreducethepastureneededgloballyforlivestockbycloseto200Mhaandthecroplandthatisusedtogrowfeedforlivestockbyafurther80Mha.Arenetzeroemissionsby2050possiblewithoutexpandinglanduseforbioenergy?Estimatesoftheglobalsustainableb

626、ioenergypotentialaresubjecttoahighdegreeofuncertainty,inparticularovertheextenttowhichnewlandareacould sustainablybeconverted to bioenergy production. As a result, the NZE takes a cautious approach tobioenergyuse,withconsumptionin2050(100EJ)wellbelowthelatestestimatesthatintegraterelevantSDGs,whichs

627、uggestapotentialbetween150170EJ.Butitispossiblethatthelandavailabletoprovidesustainablebioenergyisevenmorelimited.Hereweexploretheimplicationsforemissionsofrestrictinglandusefordedicatedbioenergycropsandforestryplantationstoaround330Mha,whichiswhatisusedtoday.Figure 2.29 Impact on electricity demand

628、 and ability to achieve net-zero emissions by 2050 without expanded bioenergy land use IEA.Allrightsreserved.Achieving net-zero emissions without expanding bioenergy land use would require a further 3 200 TWh from solar PV and wind, increasing capacity in the NZE by nearly 10% Limitinglanduseto330Mh

629、awouldreduceavailablebioenergysupplyin2050bymorethan10EJ.Thiswouldmostlytaketheformofareductionintheavailabilityofshortrotationwoodyenergycrops,whicharemainlyusedintheNZEinplaceoffossilfuelstoprovidehightemperatureheatforindustrialprocessesandforelectricitygeneration.Withoutbioenergy,306090120EJNZEW

630、ithoutexpandingbioenergylanduseBioenergyuseElectricitydemandSolarPVandwind20406080ThousandTWh8162432ThousandGWIEA. All rights reserved.94 International Energy Agency | Special Report itislikelythathydrogenandsyntheticmethanewouldbeusedinstead,andtheirproductionwouldrequirearound70Mtofhydrogenin2050(

631、15%morethanintheNZE).Ifthisweretobeproducedthroughtheuseofelectrolysisitwouldrequirearound750GWofelectrolysercapacityandincreaseelectricitydemandin2050byaround3200TWh(Figure2.29).Theadditionalelectricitythatwouldbeneededcouldbeproducedusingrenewables,whichwouldrequireanadditional1700GWofwindandsolar

632、PVcapacityandalmost350GWofadditionalbatterycapacityin2050.Annualcapacityadditionsduringthe2030swouldneedtobe160GWhigherthanintheNZE.Theadditionalwind,solar,batteryandelectrolysercapacity,togetherwiththeelectricitynetworksandstorageneededtosupportthishigherlevelofdeploymentwouldcostmorethanUSD5trilli

633、onby2050.ThisisUSD4.5trillionmorethanwouldbeneedediftheuseofbioenergyweretobeexpandedasenvisagedintheNZE,andwouldincreasethetotalinvestmentneededintheNZEby3%.Whileitmightthereforebe possible still to achieve netzero emissions in 2050 without expanding land use forbioenergy,thiswouldmaketheenergytran

634、sitionsignificantlymoreexpensive.2.7.3 CCUSappliedtoemissionsfromfossilfuelsAtotalof7.6GtCO2iscapturedin2050intheNZE,almost50%ofwhichisfromfossilfuelcombustion,20%isfromindustrialprocesses,andaround30%isfrombioenergyusewithCO2captureandDAC(Figure2.30).TheuseofCCUSwithfossilfuelsprovidesalmost70%ofth

635、etotalgrowthinCCUSto2030intheNZE.YettheprospectsfortherapidscalingupofCCUSareveryuncertainforeconomic,politicalandtechnicalreasons.Herewelookattheimplicationsforreachingnetzeroemissionsin2050iffossilfuelCCUSdoesnotexpandbeyondexistingandplannedprojects.Figure 2.30 CCUS by sector and emissions source

636、 in the NZE IEA.Allrightsreserved.Fossil fuel emissions account for almost 70% of total CO2 capture in 2030 and almost 50% in 2050 Note:DAC=directaircapture.20402050202020302040205020202030204020502020203020402050GtCO2AtmosphereIndustrialprocessesBioenergyFossilfuelsElectricityIndustryFue

637、lsupplyDACCO2sourceChapter 2 | A global pathway to net-zero CO emissions in 2050 95 2Arenetzeroemissionsby2050possiblewithoutfossilfuelbasedCCUS?FossilfuelbasedCCUSapplicationscomprisemostoftheCCUSprojectsaddedto2030intheNZE.TheseprojectshelptoreducerisksforothernonfossilfuelCCUSapplicationsthataree

638、ssentialtoreachnetzero.InviewofthechallengesthatfossilfuelbasedCCUSprojectsface,wehaveconstructedaLowCCUSCase(LCC)inwhichnonewfossilfuelCCUSprojectsaredevelopedbeyondthosealreadyunderconstructionorapprovedfordevelopment.IntheLCC,CO2emissionscapturedfromfossilfuelsareonlyaround150Mtin2050,comparedwit

639、h3600Mtin2050intheNZE.Inindustry,thelackofnewfossilfuelCCUSprojectsleadsintheLCCto1.2GtofadditionalCO2emissionscomparedwiththeNZEin2050.Itwouldbenecessarytousealternativetechnologiestoeliminatetheseemissionsinordertoachievenetzeroby2050.Anumberoftechnologiesthatareattheprototypestageofdevelopmentwou

640、ldbeneeded,suchaselectriccementkilnsorelectricsteamcrackersforhighvaluechemicalsproduction(seeBox2.4).Assumingthatthesetechnologiescouldbedemonstratedanddeployedatscale,this would increase electricity demand by around 2400TWh and hydrogen demand inindustrybyaround45Mtin2050.Itwouldalsobenecessarytor

641、eplacethe145MtofhydrogenthatisproducedintheNZEfromfossilfuelsequippedwithCCUS.Provisionofthis190Mtofhydrogenthroughelectrolysiswouldrequireanadditional2000GWcapacityofelectrolysersin2050(almost60%morethanintheNZE)andanadditional9000TWhofelectricity(Figure2.31).Figure 2.31 Impacts of achieving net-ze

642、ro emissions by 2050 without expanded fossil fuel-based CCUS IEA.Allrightsreserved.Failure to deploy fossil fuel-based CCUS would significantly increase electricity demand and require much more solar, wind and electrolyser capacity Note:LCC=LowCCUSCasewhereCCUSappliedtofossilfuelsisrestrictedtoproje

643、ctsunderconstructionorapprovedfordevelopmenttoday.204060NZELCCNZELCCThousandTWhElectricitydemandHydrogenIndustryOther20302050Electricityfor:102030NZE LCC NZE LCCNZE LCC NZE LCCThousandGWCapacitySolarPVWindElectrolysersBatteries2030205020302050Capacity:IEA. All rights reserved.96 International Energy

644、 Agency | Special Report Box 2.4 Technology innovation in the NZE Innovationiskeytodevelopingnewcleanenergytechnologiesandadvancingexistingones.Theimportanceofinnovationincreasesaswegetcloserto2050becauseexistingtechnologieswillnotbeabletogetusallthewayalongthepathtonetzeroemissions.Almost 50% of th

645、e emissions reductions needed in 2050 in the NZE depend ontechnologiesthatareattheprototypeordemonstrationstage,i.e.arenotyetavailableonthemarket(seeChapter4).Afteranewideamakesitswayfromthedrawingboardtothelaboratoryandoutintotheworld,therearefourkeystagesinthecleanenergyinnovationpipeline(IEA,2020

646、d).Butthepathwaytomaturitycanbelongandsuccessisnotguaranteed. Prototype.Aconceptisdevelopedintoadesignandthenintoaprototypeforanewdevice,e.g.afurnacethatproducessteelwithpurehydrogeninsteadofcoal. Demonstration.Thefirstexamplesofanewtechnologyareintroducedatthesizeofafullscalecommercialunit,e.g.asys

647、temthatcapturesCO2emissionsfromcementplants. Marketuptake.Thetechnologyisbeingdeployedinanumberofmarkets.However,it either has a cost and performance gap with established technologies (e.g.electrolysersforhydrogenproduction)oritiscompetitivebuttherearestillbarriers,suchasintegrationwithexistinginfra

648、structureorconsumerpreferences,toreachingitsfullmarketpotential(e.g.heatpumps).Policyattentionisneededinbothcasestostimulatewiderdiffusiontoreducecostsandtoovercomeexistingbarriers,withmoreofthecostsandrisksbeingbornegraduallybytheprivatesector. Maturity. The technology has reached market stability,

649、 and new purchases orinstallations are constant or even declining in some environments as newertechnologiesstarttocompetewiththestockofexistingassets,e.g.hydropowerturbines.InnovationiscriticalintheNZEtobringnewtechnologiestomarketandtoimproveemergingtechnologies,including forelectrification,CCUS,hy

650、drogenandsustainablebioenergy.ThedegreeofrelianceoninnovationintheNZEvariesacrosssectorsandalongthevariousstepsofthevaluechainsinvolved(Figure2.32). Electrification.Almost30%ofthe170GtCO2cumulativeemissionsreductionsfromtheuseoflowemissionselectricityintheNZEcomesfromtechnologiesthatarecurrentlyatpr

651、ototypeordemonstrationstage,suchaselectricitybasedprimarysteelproductionorelectrictrucks. Hydrogen.Notallstepsofthelowcarbonhydrogenvaluechainareavailableonthemarkettoday.Themajorityofdemandtechnologies,suchashydrogenbasedsteelproduction,areonlyatthedemonstrationorprototypestage.Thesedelivermorethan

652、75%ofthecumulativeemissionsreductionsintheNZErelatedtohydrogen.Chapter 2 | A global pathway to net-zero CO emissions in 2050 97 2 CCUS.Around55%ofthecumulativeemissionsreductionsthatcomefromCCUSintheNZEarefromtechnologiesthatareatthedemonstrationorprototypestagetoday.WhileCO2capturehasbeeninuseforde

653、cadesincertainindustrialandfueltransformationprocesses,suchasammoniaproductionandnaturalgasprocessing,it is still being demonstrated at a large scale in many of the other possibleapplications. Bioenergy.Around45%ofthecumulativeemissionsreductionsintheNZErelatedtosustainablebioenergycomefromtechnolog

654、iesthatareatthedemonstrationorprototypestagetoday,mainlyfortheproductionofbiofuels.Figure 2.32 Cumulative CO2 emissions reductions for selected technologies by maturity category in the NZE IEA.Allrightsreserved.CCUS, hydrogen and bioenergy technologies are less mature than electrification. Most tech

655、nologies for heavy industry and trucks are at early stages of development. Notes:BioFT=BiomassgasificationwithFischerTropschsynthesis.Maturitylevelsarethetechnologydesignatthemostadvancedstage.20406080100120BioFTBioFTwithCCUSBiomassCCUSpowerSteelCarsShippingTrucksDACSSteelFossilCCUSpowerCementElectr

656、ifiedprimarysteelHeatpumpsElectrictrucksElectriccarsWindSolarPVGtCOMarketuptakeDemonstrationPrototypeCCUSHydrogenbased fuelsElectricityBioenergyIEA. All rights reserved.98 International Energy Agency | Special Report Intheelectricitysector,itwouldbenecessarytoproduceanadditional11300TWhofelectricity

657、forindustryandfueltransformationandtoreplacevirtuallyalloftheelectricitygeneratedfromfossilfuelpoweredplantsequippedwithCCUSin2050intheNZE.Usingrenewables,thiswouldrequireanadditional7000GWofwindandsolarPVcapacityin2050.Thisisaround30%morethanintheNZE,andwouldmeanthatannualcapacityadditionsofsolarPV

658、andwindduringthe2030swouldneedtoreach1300GW(300GWmorethanintheNZE).ToaccommodatethisadditionallevelofvariablerenewablesandtoprovidetheflexibilitythatisavailablefromfossilfuelCCUSequippedplantsintheNZE,around660GWmorebatterycapacitywouldbeneededin2050(20%morethanintheNZEinin2050),togetherwithaddition

659、al110GWofotherdispatchablecapacity.ReducingtherateofaddingCCUSatexistingcoalandgasfiredgenerationplantsintheLCCwouldalsoraisetheriskofstrandedassets.WeestimatethatuptoUSD90billionofexistingcoalandgasfiredcapacitycouldbestrandedin2030anduptoUSD400billionby2050.InvestmentinfossilfuelbasedCCUSintheNZEt

660、o2050isaroundUSD650billion,whichwouldbeavoidedintheLCC.ButadditionalinvestmentisrequiredintheLCCforextrawind,solar and electrolyser capacity, for electricitybased routes in heavy industry, and forexpandedelectricitynetworksandstoragetosupportthishigherlevelofdeployment.Asaresult,theadditionalcumulat

661、iveinvestmenttoreachnetzeroemissionsin2050intheLCCisUSD15trillionhigherthanintheNZE.Failure to develop CCUS for fossil fuels would also be likely to delay or prevent thedevelopmentofotherCCUSapplications.WithoutfossilfuelbasedCCUS,thenumberofusersandthevolumesoftheCO2transportandstorageinfrastructur

662、edeployedaroundindustrialclusterswouldbereduced.Feweractorsandmorelimitedpoolsofcapitalwouldbeavailabletoincurthehighupfrontcostsofinfrastructure,aswellasotherrisksassociatedwiththeinitialrolloutofCCUSinfrastructureclusters.Inaddition,therewouldbefewerspillover learning and costreduction benefits fr

663、om developing fossil fuelbased CCUS,makingthesuccessfuldemonstrationandscaleupofmorenascentCCUStechnologiesmuchlesslikely.AdelayinthedevelopmentofotherCCUStechnologieswouldhaveamajorimpactontheprospectofgettingtonetzeroemissionsin2050.Forexample,CCUSistheonlyscalablelowemissionsoptiontoremoveCO2from

664、theatmosphereandtoalmosteliminateemissionsfromcementproduction.Ifprogressinthesetechnologiesweredelayedandcouldnotbedeployedatscale,thenachievingnetzeroemissionsby2050wouldbevastlymoredifficult.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 99 Chapter3Sectoral pathways to net-zero emiss

665、ions by 2050 FossilfuelusefallsdrasticallyintheNetZeroEmissionsScenario(NZE)by2050,andnonewoilandnaturalgasfieldsarerequiredbeyondthosethathavealreadybeenapprovedfordevelopment.Nonewcoalminesormineextensionsarerequired.Lowemissionsfuelsbiogases,hydrogenandhydrogenbasedfuelsseerapidgrowth.Theyaccount

666、foralmost20%ofglobalfinalenergyin2050,comparedwith1%in2020.Morethan500Mtoflowcarbonhydrogenisproducedin2050,ofwhichabout60% is produced using electrolysis that accounts for 20% of global electricitygenerationin2050.Liquidbiofuelsprovide45%ofglobalaviationfuelin2050. Electricitydemandgrowsrapidlyinth

667、eNZE,rising40%fromtodayto2030andmorethantwoandahalftimesto2050,whileemissionsfromgenerationfalltonetzeroinaggregateinadvancedeconomiesby2035andgloballyby2040.Renewablesdrivethetransformation,upfrom29%ofgenerationin2020to60%in2030andnearly90%in2050.From2030to2050,600GWofsolarPVand340GWofwindareaddede

668、achyear.Theleastefficientcoalplantsarephasedoutby2030andallunabatedcoalby2040.Investmentinelectricitygridstriplesto2030andremainselevatedto2050. Inindustry,emissionsdropby20%to2030and90%to2050.Around60%ofheavyindustryemissionsreductionsin2050intheNZEcomefromtechnologiesthatarenotreadyformarkettoday:

669、manyoftheseusehydrogenorCCUS.From2030,allnewindustrycapacityadditionsarenearzeroemissions.Eachmonthfrom2030,theworldequips10newandexistingheavyindustryplantswithCCUS,adds3newhydrogenbasedindustrialplantsandadds2GWofelectrolysercapacityatindustrialsites. Intransport,emissionsdropby20%to2030and90%to20

670、50.Theinitialfocusisonincreasingtheoperationalandtechnicalefficiencyoftransportsystems,modalshifts,andtheelectrificationofroadtransport.By2030,electriccarsaccountforover60%ofcarsales(4.6%in2020)andfuelcellorelectricvehiclesare30%ofheavytrucksales(lessthan0.1%in2020).By2035,nearlyallcarssoldgloballya

671、reelectric,andby2050nearly all heavy trucks sold are fuel cell or electric. Lowemissions fuels andbehaviouralchangeshelptoreduceemissionsinlongdistancetransport,butaviationandshippingremainchallengingandaccountfor330MtCO2emissionsin2050. Inbuildings,emissionsdropby40%to2030andmorethan95%to2050.By203

672、0,around 20% of the existing building stock worldwide is retrofitted and all newbuildings comply with zerocarbonready building standards. Over 80% of theappliances sold are the most efficient models available by 2025 in advancedeconomiesandbythemid2030sworldwide.Therearenonewfossilfuelboilerssoldfro

673、m2025,exceptwheretheyarecompatiblewithhydrogen,andsalesofheatpumpssoar.By2050,electricityprovides66%ofenergyuseinbuildings(33%in2020).Naturalgasuseforheatingdropsby98%intheperiodto2050.S U M M A R YIEA. All rights reserved.100 International Energy Agency | Special Report 3.1 IntroductionThe NetZero

674、Emissions by 2050 Scenario (NZE) involves a global energy systemtransformationthatisunparalleledinitsspeedandscope.Thischapterlooksathowthemainsectorsaretransformed,aswellasthespecificchallengesandopportunitiesthisinvolves (Figure3.1). It covers the supply of fossil and lowemissions fuels, electrici

675、tygenerationandthethreemainendusesectorsindustry,transportandbuildings.Foreachsector,wesetoutsomekeytechnologyandinfrastructuremilestonesonwhichtheNZEdependsforitssuccessfuldelivery.Furtherwediscusswhatkeypolicydecisionsareneeded,andbywhen,toachievethesemilestones.Recognisingthatthereisnosinglepathw

676、aytoachievenetzeroemissionsby2050andthattherearemanyuncertaintiesrelatedtocleanenergytransitions,inthischapterwealsoexploretheimplicationsofchoosingnottorelyoncertainfuels,technologiesoremissionsreductionoptionsacrossthetransformationandendusesectors.Figure 3.1 CO2 emissions by sector in the NZE IEA

677、.Allrightsreserved.Emissions fall fastest in the power sector, with transport, buildings and industry seeing steady declines to 2050. Reductions are aided by the increased availability of low-emissions fuels Note:Other=agriculture,fuelproduction,transformationandrelatedprocessemissions,anddirectairc

678、apture.3.2 Fossilfuelsupply3.2.1 EnergytrendsintheNetZeroEmissionsScenarioCoalusedeclinesfrom5250milliontonnesofcoalequivalent(Mtce)in2020to2500Mtcein2030andtolessthan600Mtcein2050.Evenwithincreasingdeploymentofcarboncapture, utilisation and storage (CCUS), coal use in 2050 is 90% lower than in 2020

679、5050203020402050GtCOPowerBuildingsTransportIndustryOtherChapter 3 | Sectoral pathways to net-zero emissions by 2050 101 3(Figure3.2).Oildemandneverreturnstoits2019peakanditdeclinesfrom88millionbarrelsperday(mb/d)in2020to72mb/din2030andto24mb/din2050,afallofalmost75%between2020and2050.Natu

680、ralgasquicklyreboundsfromthedipindemandin2020andrisesthroughtothemid2020s,reachingapeakofaround4300billioncubicmetres(bcm),beforedroppingto3700bcmin2030andto1750bcmin2050.By2050,naturalgasuseis55%lowerthanin2020.Figure 3.2 Coal, oil and natural gas production in the NZE IEA.Allrightsreserved.Between

681、 2020 and 2050, demand for coal falls by 90%, oil by 75%, and natural gas by 55% OilThetrajectoryofoildemandintheNZEmeansthatnoexplorationfornewresourcesisrequiredand,otherthanfieldsalreadyapprovedfordevelopment,nonewoilfieldsarenecessary.However,continuedinvestmentinexistingsourcesofoilproductionar

682、eneeded.OnaverageoildemandintheNZEfallsbymorethan4%peryearbetween2020and2050.Ifallcapitalinvestmentinproducingoilfieldsweretoceaseimmediately,thiswouldleadtoalossofover8%ofsupplyeachyear.Ifinvestmentweretocontinueinproducingfieldsbutnonewfieldsweredeveloped,thentheaverageannuallossofsupplywouldbearo

683、und4.5%(Figure3.3).Thedifferenceismadeupbyfieldsthatarealreadyapprovedfordevelopment.ThesedynamicsarereflectedintheoilpriceintheNZE,whichdropstoaroundUSD35/barrelin 2030 and USD25/barrel in 2050. This price trajectory is largely determined by theoperatingcostsforfieldscurrentlyinoperation,andonlyave

684、rysmallvolumeofexistingproductionwouldneedtobeshutin.However,incomefromoilproductioninallcountriesismuchlowerintheNZEthaninrecentyears,1andtheNZEprojectssignificantstranded1Governmentsmayalsoreduceoreliminateupstreamtaxestoensurethatproductioncostsarebelowtheoilpricetomaintaindomesticproduction.5010

685、0000200402050EJHistoricalProjectedNatural gasOilCoalIEA. All rights reserved.102 International Energy Agency | Special Report capitalandstrandedvalue.2TheoilpriceintheNZEwouldbesufficientinprincipletocoverthecostofdevelopingnewfieldsforthelowestcostproducers,includingthoseinthe

686、MiddleEast,butitisassumedthatmajorresourceholdersdonotproceedwithinvestmentinnewfieldsbecausedoingsowouldcreatesignificantadditionaldownwardpressureonprices.The refining sector also faces major challenges in the NZE. Refinery throughput dropsconsiderablyandtherearesignificantchangesinproductdemand.W

687、ithrapidelectrificationofthevehiclefleet,thereisamajordropindemandfortraditionalrefinedproductssuchasgasolineanddiesel,whiledemandfornoncombustedproductssuchaspetrochemicalsincreases.Inrecentyears,around55%ofoildemandwasforgasolineanddiesel,butthisdropstolessthan15%in2050,whiletheshareofethane,napht

688、haandliquefiedpetroleumgas(LPG)risesfrom20%inrecentyearstoalmost60%in2050.Thisshiftaccentuatesthedropinoildemandforrefiners,andrefineryrunsfallby85%between2020and2050.Refinersareusedtocopingwithchangingdemandpatterns,butthescaleofthechangesintheNZEwouldinevitablyleadtorefineryclosures,especially for

689、refineriesnotabletoconcentrateprimarilyonpetrochemicaloperationsortheproductionofbiofuels.Figure 3.3 Oil and natural gas production in the NZE IEA.Allrightsreserved.No new oil and natural gas fields are required beyond those already approved for development. Supply is increasingly concentrated in a

690、few major producing countries NaturalgasNonewnaturalgasfieldsareneededintheNZEbeyondthosealreadyunderdevelopment.Alsonotneededaremanyoftheliquefiednaturalgas(LNG)liquefactionfacilitiescurrentlyunderconstructionorattheplanningstage.Between2020and2050,naturalgastradedas2Strandedcapitaliscapitalinvestm

691、entinfossilfuelinfrastructurethatisnotrecoveredovertheoperatinglifetimeoftheassetbecauseofreduceddemandorreducedpricesresultingfromclimatepolicies.Strandedvalueisareductioninthefuturerevenuegeneratedbyanassetorassetownerassessedatagivenpointintimebecauseofreduceddemandorreducedpricesresultingfromcli

692、matepolicies(IEA,2020a).255075020203020402050mb/dMiddleEastNorthAmericaEurasiaAfricaAsiaPacificCentralandSouthAmericaEuropeOil20203020402050ThousandbcmNaturalgasChapter 3 | Sectoral pathways to net-zero emissions by 2050 103 3LNGfallsby60%andtradebypipelinefallsby65%.Duringthe2

693、030s,globalnaturalgasdemanddeclinesbymorethan5%peryearonaverage,meaningthatsomefieldsmaybeclosedprematurelyorshutintemporarily.Declinesinnaturalgasdemandslowafter2040,andmorethanhalfofnaturalgasusegloballyin2050istoproducehydrogeninfacilitieswithCCUS.Thelargelevelofhydrogen,alsoproducedusingelectrol

694、ysis,andbiomethaneintheNZE,meansthatthedeclineintotalgaseousfuelsismoremutedthanthedeclineinnaturalgas.Thishasimportantimplicationsforthefutureofthegasindustry(seeChapter4).CoalNonewcoalminesorextensionsofexistingonesareneededintheNZEascoaldemanddeclinesprecipitously.Demandforcokingcoalfallsatasligh

695、tlyslowerratethanforsteamcoal,butexistingsourcesofproductionaresufficienttocoverdemandthroughto2050.Suchadeclineincoaldemandwouldhavemajorconsequencesforemploymentincoalminingregions(seeChapter4).Thereisaslowdownintherateofdeclineinthe2040sascoalproductionfacilitiesareincreasinglyequippedwithCCUS:in

696、theNZE,around80%ofcoalproducedin2050appliesCCUS.3.2.2 InvestmentinoilandgasUpstreamoilandgasinvestmentaveragesaboutUSD350billioneachyearfrom2021to2030intheNZE(Figure3.4).Thisissimilartothelevelin2020,butaround30%lowerthanaverage levels during the previous five years. Once fields under development st

697、artproduction,alloftheupstreaminvestmentintheNZEistosupportoperationsinexistingfields;after2030,totalannualupstreaminvestmentisaroundUSD170billioneachyear.Figure 3.4 Investment in oil and natural gas supply in the NZE IEA.Allrightsreserved.Once fields under development start production, all upstream

698、 oil and gas investment is spent on maintaining production at existing fields Note:Investmentinnewfieldsinthe20212030periodisforprojectsthatarealreadyunderconstructionorhavebeenapproved.200400600202024020400200202024020412050BillionUS

699、D(2019)RefiningTransportExistingNewOilNaturalgasFieldsIEA. All rights reserved.104 International Energy Agency | Special Report 3.2.3 EmissionsfromfossilfuelproductionEmissionsfromthesupplychainsofcoal,oilandnaturalgasfalldramaticallyintheNZE.Theglobalaveragegreenhousegas(GHG)emissionsintensityofoil

700、productiontodayisjustunder100kilogrammesofcarbondioxideequivalent(kgCO2eq)perbarrel.Withoutchanges,alargeproportionofglobalproductionwouldbecomeuneconomic,asCO2pricesareappliedtothefullvaluechainsoffossilfuels.Forexample,by2030theCO2priceinadvancedeconomiesintheNZEisUSD100pertonneofCO2(tCO2),whichwo

701、uldaddUSD10tothecostofproducingeachbarrelattodaysaveragelevelofemissionsintensity.Methaneconstitutesabout60%ofemissionsfromthecoalandnaturalgassupplychainsandabout35%ofemissionsfromtheoilsupplychain.IntheNZE,totalmethaneemissionsfromfossilfuelsfallbyaround75%between2020and2030,equivalenttoa2.5gigato

702、nneofcarbondioxideequivalent(GtCO2eq)reductioninGHGemissions(Figure3.5).Aroundonethirdofthisdeclineisaresultofanoverallreductioninfossilfuelconsumption,butthelargersharecomesfromahugeincreaseinthedeploymentofemissionsreductionmeasuresandtechnologies,whichleadstotheeliminationofalltechnicallyavoidabl

703、emethaneemissionsby2030(IEA,2020a).Figure 3.5 Methane emissions from coal, oil and natural gas in the NZE IEA.Allrightsreserved.Methane emissions from fossil fuels fall by 75% between 2020 and 2030 as result of a concerted global effort to deploy all available reduction measures and technologies Not

704、e:Mt=milliontonnes.ActionstoreducetheemissionsintensityofexistingoilandgasoperationsintheNZEleadsto:theendofallflaring;theuseofCCUSwithcentralisedsourcesofemissions(includingtocapturenaturalsourcesofCO2thatareoftenextractedwithnaturalgas);andsignificantelectrification of upstream operations (often m

705、aking use of offgrid renewable energysources).04080200252030MtCOeqMtmethaneNaturalgasOilCoalChapter 3 | Sectoral pathways to net-zero emissions by 2050 105 3TheNZEinevitablybringssignificantchallengesforfossilfuelindustriesandthosewhoworkinthem,butitalsobringsopportu

706、nities.CoalminingdeclinesdramaticallyintheNZE,buttheminingofmineralsneededforcleanenergytransitionsincreasesveryrapidly,andminingexpertiseislikelytobehighlyvaluedinthiscontext.TheoilandgasindustrycouldplayakeyroleinhelpingtodevelopatscaleanumberofcleanenergytechnologiessuchasCCUS,lowcarbonhydrogen,b

707、iofuelsandoffshorewind.Scalingupthesetechnologiesandbringingdowntheircostswillrelyonlargescaleengineeringandprojectmanagementcapabilities,qualitiesthatareagoodmatchtothoseoflargeoilandgascompanies.Theseissues,includingthequestionofhowtohelpthoseaffectedbythemajorchangesimpliedbytheNZE,arediscussedin

708、moredetailinChapter4.3.3 Lowemissionsfuelsupply3.3.1 EnergytrendsintheNetZeroEmissionsScenarioReachingnetzeroemissionswillrequirelowemissionsfuels3whereenergyneedscannoteasilyoreconomicallybemetbyelectricity(Figure3.6).Thisislikelytobethecaseforsomemodesoflongdistancetransport(trucks,aviationandship

709、ping)andofheatandfeedstocksupplyinheavyindustry.Somelowemissionsfuelsareeffectivelydropin,i.e.theyarecompatiblewiththeexistingfossilfueldistributioninfrastructureandendusetechnologies,andrequirefewifanymodificationstoequipmentorvehicles.Lowemissionsfuelstodayaccountforjust1%ofglobalfinalenergydemand

710、,asharethatincreasesto20%in2050intheNZE.Liquidbiofuelsmeet14%ofglobaltransportenergydemandin2050,upfrom4%in2020;hydrogenbasedfuelsmeetafurther28%oftransportenergyneedsby2050.Lowcarbongases(biomethane,syntheticmethaneandhydrogen)meet35%ofglobaldemandforgassuppliedthroughnetworksin2050,upfromalmostzer

711、otoday.Thecombinedshareoflowcarbonhydrogenandhydrogenbasedfuelsintotalfinalenergyuseworldwidereaches13%in2050.Hydrogenandammoniaalsoprovideimportantlowemissionssourcesofpowersystemflexibilityandcontribute2%ofoverallelectricitygenerationin2050,whichisenoughtomaketheelectricitysectoranimportantdrivero

712、fhydrogendemand.3Lowemissionsfuelsrefertoliquidbiofuels,biogasandbiomethane,andhydrogenbasedfuels(hydrogen,ammoniaandsynthetichydrocarbonfuels)thatdonotemitCO2fromfossilfuelsdirectlywhenusedandalsoemitverylittlewhenbeingproduced.Forexample,hydrogenproducedfromnaturalgaswithCCUSandhighcapturerates(90

713、%orhigher)isconsideredalowemissionsfuel,butnotifproducedwithoutCCUS.IEA. All rights reserved.106 International Energy Agency | Special Report Figure 3.6 Global supply of low-emissions fuels by sector in the NZE IEA.Allrightsreserved.Low-emissions fuels in the form of liquid biofuels, biomethane, hyd

714、rogen-based fuels help to decarbonise sectors where direct electrification is challenging Notes:TFC=totalfinalconsumption.Lowcarbongasesinthegasgridreferstotheblendingofbiomethane,hydrogenandsyntheticmethanewithnaturalgasinagasnetworkforuseinbuildings,industry,transportandelectricitygeneration.Synfu

715、elsrefertosynthetichydrocarbonfuelsproducedfromhydrogenandCO2.Finalenergyconsumptionofhydrogenincludes,inadditiontothefinalenergyconsumptionofhydrogen,ammoniaandsynthetichydrocarbonfuels,theonsitehydrogenproductionintheindustrysector.3.3.2 Biofuels4Around10%oftheglobalprimarysupplyofmodernbioenergy(

716、biomassexcludingtraditionalusesforcooking)wasconsumedasliquidbiofuelsforroadtransportand6%wasconsumedasbiogases(biogasandbiomethane)toprovidepowerandheatin2020,withtherestdirectly used for electricity generation and heating in the residential sector. SupplyacceleratessharplyintheNZEwithliquidbiofuel

717、sexpandingbyafactorofalmostfourandbiogasesincreasingbyafactorofsixby2050.Allbutabout7%ofliquidbiofuelsfortransportarecurrentlyproducedfromconventionalcropssuchassugarcane,cornandsoybeans.Suchcropsdirectlycompetewitharablelandthatcanbeusedforfoodproduction,whichlimitsthescopeforexpandingoutput.Somost

718、ofthegrowthinbiofuelsintheNZEcomesfromadvancedfeedstockssuchaswastesandresiduesandwoodyenergycropsgrownonmarginallandsandcroplandnotsuitableforfood4Liquidsandgasesproducedfrombioenergy.10%20%30%40%202020302050202020302050202020302050ShippingAviationRoadtransportBiomethaneHydrogenSyntheticmethaneBuil

719、dingsIndustryTransporthydrogenTransportammoniaTransportsynfuelsLiquidbiofuelsintransportLowcarbongasesingasgridHydrogenbasedfuelsinTFCChapter 3 | Sectoral pathways to net-zero emissions by 2050 107 3production(seesection2.7.2).Advancedliquidbiofuelproductiontechnologyusingwoodyfeedstockexpandsrapidl

720、yoverthenextdecadeintheNZE,anditscontributiontoliquidbiofuelsjumpsfromlessthan1%in2020toalmost45%in2030and90%in2050(Figure3.7).By2030,productionreaches2.7millionbarrelsofoilequivalentperday(mboe/d)by2030,underpinnedbybiomassgasificationusingtheFischerTropschprocess(bioFT)andcellulosicethanol,mostlyt

721、oproducedropinsubstitutesfordieselandjetkerosene.Advancedliquidbiofuelproductionincreasesbyanadditional130%tomorethan6mboe/din2050,thebulkofwhichisbiokerosene.Figure 3.7 Global biofuels production by type and technology in the NZE IEA.Allrightsreserved.Liquid biofuel production quadruples while that

722、 of biogases expands sixfold between 2020 and 2050, underpinned by the development of sustainable biomass supply chains Notes: EJ = exajoules; CCUS=carbon capture, utilisation and storage. Conventional ethanol refers toproductionusingfoodenergycrops.Advancedethanolreferstoproductionusingwastesandres

723、iduesandnonfoodenergycropsgrownonmarginalandnonarableland.Conventionalbiodieselincludesfattyacidandmethylesters(FAME)routeusingfoodenergycrops.AdvancedbiodieselincludesbiomassbasedFischerTropschandHEFAroutesusingwastes,residuesandnonfoodenergycropsgrownonmarginalandnonarableland.Biomethaneincludesbi

724、ogasupgradingandbiomassgasificationbasedroutes.Production using these feedstocks is mostly under development today. Current outputcapacity,principallycellulosicethanol,isabout2.5thousandbarrelsofoilequivalentperday(kboe/d).TheNZEassumesthatprojectscurrentlyinthepipelineinJapan,theUnitedKingdomandthe

725、UnitedStateswillbringthesetechnologiestothemarketwithinthenextfewyears.Thescaleuprequiredforalladvancedliquidbiofuels(includingfromwasteoils)overthenextdecadeisequivalenttobuildingone55kboe/dbiorefineryeverytenweeks(theworldslargestbiorefineryhascapacityof28kboe/d).Thesupplyofthesebiofuelsafter2030s

726、hiftsrapidlyintheNZEfrompassengervehiclesandlighttrucks,whereelectrificationisincreasinglytheorderoftheday,toheavyroadfreight,shipping and aviation. Ammonia makes inroads into shipping. Advanced liquid biofuelsincreasetheirshareoftheglobalaviationfuelmarketfrom15%in2030to45%in2050.5020302

727、0202050204020302020EJBiogasBiomethaneConventionalethanolAdvancedethanolConventionalbiodieselAdvancedbiodieselandbiokerosenewithCCUSLiquidbiofuelsGaseousbiofuelsIEA. All rights reserved.108 International Energy Agency | Special Report Advancedbiofuelssuchashydrogenatedestersandfattyacids(HEFA)andbioF

728、Tareabletoadjusttheirproductslates(uptoapoint)fromrenewabledieseltobiokerosene,andexistingethanol plants, especially those that can be retrofitted with CCUS or integrated withcellulosicfeedstock,alsomakeacontribution.Thesupplyofbiogasesincreasesevenmorethanliquidbiofuels.Injectionintogasnetworksexpa

729、ndsfromunder1%oftotalgasvolumein2020toalmost20%in2050,reducingtheemissionsintensityofthenetworkbasedgas.Biomethaneismostlyproducedbyupgradingbiogasproducedfromanaerobicdigestionoffeedstockssuchasagriculturalresidueslikemanureandbiogenicmunicipalsolidwaste,therebyavoidingmethaneemissionsthatwouldothe

730、rwisebereleased.Duetothedispersednatureofthesefeedstocks,thisassumestheconstructionofthousandsofinjectionsitesandassociateddistributionlineseveryyear.BiogasandbiomethanearealsousedascleancookingfuelsandinelectricitygenerationintheNZE.TheproductionofbiofuelscanbecombinedwithCCUSatarelativelylowcostin

731、somebiofuelproduction routes (ethanol, bioFT, biogas upgrading) because the processes involvedreleaseverypurestreamsofCO2.IntheNZE,theuseofbiofuelswithCCUSresultsinannualcarbondioxideremoval(CDR)of0.6GtCO2in2050,whichoffsetresidualemissionsintransportandindustry.3.3.3 HydrogenandhydrogenbasedfuelsHy

732、drogenuseintheenergysectortodayislargelyconfinedtooilrefiningandtheproductionofammoniaandmethanolinthechemicalsindustry.Globalhydrogendemandwasaround90milliontonnes(Mt)in2020,mainlyproducedfromfossilfuels(mostlynaturalgas)andemitting close to 900MtCO2. Both the amount needed and the production route

733、 ofhydrogenchangeradicallyintheNZE.Demandincreasesalmostsixfoldto530Mtin2050,ofwhichhalfisusedinheavyindustry(mainlysteelandchemicalsproduction)andinthetransportsector;30%isconvertedintootherhydrogenbasedfuels,mainlyammoniaforshippingandelectricitygeneration,synthetickeroseneforaviationandsyntheticm

734、ethaneblendedintogasnetworks;and17%isusedingasfiredpowerplantstobalanceincreasingelectricitygenerationfromsolarPVandwindandtoprovideseasonalstorage.Overall,hydrogenbasedfuels5accountfor13%ofglobalfinalenergydemandin2050(Figure3.8).Ammoniaisusedtodayasfeedstockinthechemicalindustry,butintheNZEitisals

735、ousedasfuelinvariousenergyapplications,benefittingfromitslowertransportcostandhigherenergydensitythanhydrogen.Ammoniaaccountsforaround45%ofglobalenergydemandforshippingin2050intheNZE.CofiringwithammoniaisalsoapotentialearlyoptiontoreduceCO2emissionsinexistingcoalfiredpowerplants.Thetoxicityofammonia

736、meansthatitshandlingislikelytobelimitedtoprofessionallytrainedoperators,whichcouldrestrictitspotential.5Hydrogenbasedfuelsaredefinedashydrogen,ammoniaaswellassynthetichydrocarbonfuelsproducedfromhydrogenandCO2.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 109 3Figure 3.8 Global product

737、ion of hydrogen by fuel and hydrogen demand by sector in the NZE IEA.Allrightsreserved.Hydrogen production jumps sixfold by 2050, driven by water electrolysis and natural gas with CCUS, to meet rising demand in shipping, road transport and heavy industry Note:RefiningCNR=hydrogenbyproductfromcatalyt

738、icnaphthareformingatrefineries.Synthetickerosenemeetsaroundonethirdofglobalaviationfueldemandin2050intheNZE.ItsmanufactureatbioenergyfiredpowerorbiofuelproductionplantsrequiresCO2capturedfromtheatmosphere.CO2fromthesesourcescanbeconsideredcarbonneutral,asitresultsinnonetemissionswhenthefuelisused.Th

739、ereisscopeforthecoproductionofadvancedliquidbiofuelsandsyntheticliquidfuelsfromhydrogenandCO2,withtheintegrationofthetwoprocessesreducingtheoverallliquidfuelproductioncosts.Alongsidesyntheticliquidfuels,enoughsyntheticmethaneisproducedfromhydrogenandCO2in2050tomeet10%ofdemandfornetworksuppliedgasint

740、hebuildings,industryandtransportsectors.By 2050, hydrogen production in the NZE is almost entirely based on lowcarbontechnologies: water electrolysis accounts for more than 60% of global production, andnaturalgasincombinationwithCCUSforalmost40%.Globalelectrolysercapacityreaches850gigawatts (GW) by

741、2030 and 3600GW by 2050, up from around 0.3GW today.Electrolysisabsorbscloseto15000terawatthours(TWh),or20%ofglobalelectricitysupplyin2050,largelyfromrenewableresources(95%),butalsofromnuclearpower(3%)andfossilfuelswithCCUS(2%).NaturalgasuseforhydrogenproductionwithCCUSis925bcmin2050,oraround50%ofgl

742、obalnaturalgasdemand,with1.8GtCO2beingcaptured.Scalingupdeploymentoftechnologiesandrelatedmanufacturingcapacitywillbecriticaltoreducing costs. Water electrolysers are available on the market today and hydrogenproductionfromnaturalgaswithCCUShasbeendemonstratedatacommercialscale(therearesevenplantsin

743、operationaroundtheworld).Thechoicebetweenthetwodependson2004006002020203020402050MtFossilwithCCUSRefiningCNRElectricityHydrogenproduction25%50%75%ShippingRoadtransportAviation Chemicals IronandsteelSyntheticfuelsAmmoniaHydrogenShareofhydrogenfuelsbysectorin2050IEA. All rights reserved.110 Internatio

744、nal Energy Agency | Special Report economicfactors,mainlythecostofnaturalgasandelectricity,andonwhetherCO2storageisavailable.FornaturalgaswithCCUS,productioncostsintheNZEarearoundUSD12perkilogramme(kg)ofhydrogenin2050,withgascoststypicallyaccountingfor1555%oftotalproductioncosts.Forwaterelectrolysis

745、,learningeffectsandeconomiesofscaleresultinCAPEXcostreductionsof60%inthe NZE by2030comparedto2020. Productioncostreductionshingeonloweringthecostoflowcarbonelectricity,aselectricityaccountsfor5085% of total production costs, depending on the electricity source and region. Theaveragecostofproducinghy

746、drogenfromrenewablesdropsintheNZEfromUSD3.57.5/kgtodaytoaroundUSD1.53.5/kgin2030andUSD12.5/kgin2050essentiallyaboutthesameasthecostofproducingwithnaturalgaswithCCUS.Convertinghydrogenintootherenergycarriers,suchasammoniaorsynthetichydrocarbonfuels,involvesevenhighercosts.Butitresultsinfuelsthatcanbe

747、moreeasilytransportedandstored,andwhicharealsooftencompatiblewithexistinginfrastructureorendusetechnologies(asinthecaseofammoniaforshippingorsynthetickeroseneforaviation).Forammonia, the additional synthesis step increases the production costs by around 15%comparedwithhydrogen(mainlyduetoadditionalc

748、onversionlossesandequipmentcosts).TherelativelyhighcostofsynthetichydrocarbonfuelsexplainswhytheiruseislargelyrestrictedtoaviationintheNZE,wherealternativelowcarbonoptionsarelimited.Synthetickerosene costs were USD300700/barrel in 2020: although these costs fall toUSD130300/barrelby2050intheNZEasthe

749、costsofelectricityfromrenewablesandCO2feedstocksdecline,thecostofsynthetickeroseneremainsfarhigherthantheprojectedUSD25/barrelcostofconventionalkerosenein2050intheNZE.ThesupplyofCO2,capturedfrombioenergyequippedwithCCUSordirectaircapture(DAC),neededtomakethesefuelsis a relevant cost factor, accounti

750、ng for USD1570/barrel of the cost of synthetichydrocarbonfuelsin2050.Closingthesecostgapsimpliespenaltiesforfossilkeroseneorsupport measures for synthetic kerosene corresponding to a CO2 price ofUSD250400/tonne.IncreasingglobaldemandforlowcarbonhydrogenintheNZEprovidesameansforcountriesto export ren

751、ewable electricity resources that could not otherwise be exploited. Forexample, Chile and Australia announced ambitions to become major exporters in theirnational hydrogen strategies. With declining demand for natural gas in the NZE, gasproducingcountriescouldjointhismarketbyexportinghydrogenproduce

752、dfromnaturalgaswithCCUS.Longdistancetransportofhydrogen,however,isdifficultandcostlybecauseofitslowenergydensity,andcanaddaroundUSD13/kgofhydrogentoitsprice.Thismeansthat,dependingoneachcountrysowncircumstances,producinghydrogendomesticallymay be cheaper than importing it, even if domestic productio

753、n costs from lowcarbonelectricityornaturalgaswithCCUSarerelativelyhigh.InternationaltradeneverthelessbecomesincreasinglyimportantintheNZE:aroundhalfofglobalammoniaandathirdofsyntheticliquidfuelsaretradedin2050.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 111 33.3.4 Keymilestonesanddec

754、isionpointsTable 3.1 Key milestones in transforming low-emissions fuels Sector202020302050BioenergyShareofmodernbiofuelsinmodernbioenergy(excludingconversionlosses)20%45%48%Advancedliquidbiofuels(mboe/d)0.12.76.2Shareofbiomethaneintotalgasnetworks1%2%20%CO2capturedandstoredfrombiofuelsproduction(MtC

755、O2)1150625HydrogenProduction(MtH2)87212528ofwhich:lowcarbon(MtH2)9150520Electrolysercapacity(GW)400C.Otherheatsourcesincludessolarthermalandgeothermalheaters,aswellasimportedheatfromthepowerandfueltransformationsector.Electricityaccountsforaround40%ofheatdemandby2030andabout65%by2050.Forlow(400C),ac

756、countingforaround20%andaround15%respectivelyoftotalenergydemandin2050(Figure3.20).Therateofelectrolysercapacitydeploymentismuchlowerthanheavyindustries,buttheunitsizeswillalsobe25%50%75%100%205020302020205020302020205020302020FossilfuelheaterBiomassheaterElectricheaterHydrogenheaterHeatpumpOtherheat

757、sourcesMiningandconstructionFoodandtobaccoMachineryTextileandleatherTransportequipmentWoodandwoodproductsLow/mediumtemperatureheatdemandbytechnologyHeatdemandbysubsectorHightemperatureheatdemandbytechnologySubsectorsTechnologyChapter 3 | Sectoral pathways to net-zero emissions by 2050 129 3much smal

758、ler. About 5% of heat demand is satisfied by direct use of renewables,includingsolarthermalandgeothermalheatingtechnologies.Energyefficiencyalsoplaysacriticalroleinthesemanufacturingindustries,notablythrough increased efficiency in electric motors (conveyers, pumps and other drivensystems).By2030,90

759、%ofthemotorsalesinotherindustriesareClass3orabove.3.5.2 KeymilestonesanddecisionpointsTable 3.3 Key milestones in transforming global heavy industry sub-sectors CategoryHeavyindustry 2035:virtually,allcapacityadditionsareinnovativelowemissionsroutes.Industrialmotors 2035:allelectricmotorssalesarebes

760、tinclass.Category202020302050TotalindustryShareofelectricityintotalfinalconsumption21%28%46%Hydrogendemand(MtH2)5193187CO2captured(MtCO2)33752800ChemicalsShareofrecycling:reuseinplasticscollection17%27%54%reuseinsecondaryproduction8%14%35%Hydrogendemand(MtH2)466383withonsiteelectrolysercapacity(GW)0

761、38210Shareofproductionviainnovativeroutes1%13%93%CO2captured(MtCO2)270540SteelRecycling,reuse:scrapasshareofinput32%38%46%Hydrogendemand(MtH2)51954withonsiteelectrolysercapacity(GW)036295Shareofprimarysteelproduction: hydrogenbasedDRIEAF0%2%29%ironoreelectrolysisEAF0%0%13%CCUSequippedprocesses0%6%53

762、%CO2captured170670CementClinkertocementratio0.710.650.57Hydrogendemand(MtH2)0212Shareofproductionviainnovativeroutes0%9%93%CO2captured(MtCO2)02151355Note:DRI=directreducediron;EAF=electricarcfurnace.From2030onwards,allnewcapacityadditionsinindustryintheNZEfeaturenearzeroemissionstechnologies.Muchoft

763、heheavyindustrycapacitythatwillbeaddedandreplacedIEA. All rights reserved.130 International Energy Agency | Special Report inthecomingyearsisinemergingmarketanddevelopingeconomies;theymayexpectfinancialsupportfromadvancedeconomies.Eachmonthfrom2030to2050,theNZEimpliesanadditional10industrialplantseq

764、uippedwithCCUS,threeadditionalfullyhydrogenbasedindustrialplantsand2GWofextraelectrolysercapacityatindustrialsites.Whilechallenging,thisisachievable.Forcomparison,about12heavyindustrialfacilitieswerebuiltfromscratchonaveragepermonthinChinaalonefrom2000to2015.By2050,nearlyallproductioninheavyindustry

765、iswithnearzeroemissionstechnologies.DecisiveactionfromgovernmentsisimperativetoachievecleanenergytransitionsinheavyindustryatthescaleandpaceenvisionedintheNZE.Withinthenexttwoyears,governmentsinadvancedeconomieswillneedtotakedecisionsaboutfundingforR&Dforcriticalnearzeroemissionsindustrialtechnologi

766、esandformitigatingtheinvestmentrisksassociatedwithdemonstrating them at scale. This should lead to at least two or three commercialdemonstrationprojectsforeachtechnologyindifferentregions,andtomarketdeploymentbythemid2020s.Internationalcoordinationandcooperationwouldfacilitatebetteruseofresourcesand

767、helppreventgapsinfunding.Governmentsalsoneedtotakeearlydecisionsonlargescaledeploymentofnearzeroemissionstechnologies.By2024inadvancedeconomiesand2026inemergingmarketanddevelopingeconomies,governmentsshouldhaveinplaceastrategyforincorporatingnearzeroemissionstechnologiesintothenextseriesofcapacityad

768、ditionsandreplacementsforsteelandchemicalplants,whichshouldincludedecisionsaboutwhethertopursueCCUS,hydrogenoracombinationofboth.Iftheyaretosucceed,thosestrategiesneedtoincludeconcreteplansfordevelopingandfinancingthenecessaryinfrastructureforCCUSand/orhydrogen, together with clean electricity gener

769、ation for hydrogen production. Theconstructionoftherequiredinfrastructureshouldbeginassoonaspossiblegiventhelongleadtimesinvolved.Withinasimilartimeframe,governmentsofcountriesthatproducecementshoulddecidehow to develop the necessary CCUS infrastructure for that subsector, including thenecessarylega

770、landregulatoryframeworks.Importingcountriesshouldmakeplanstomoveprogressivelytoexclusiveuseoflowemissionscement,whichmayinvolvetheneedtosupportthedevelopmentofCCUSequippedfacilitieselsewhereinordertoensuresuppliesandtoavoidadisproportionateburdenbeingplacedonothercountries.Strategiesmustbeunderpinne

771、dbyspecificpolicies.By2025,allcountriesshouldhavealongtermCO2emissionsreductionpolicyframeworkinplacetoprovidecertaintythatthenextwaveofinvestmentincapacityadditionswillfeaturenearzeroemissionstechnologies.Successful strategies are likely to require initial measures such as carbon contracts fordiffe

772、rence,publicprocurementandincentivestoencourageprivatesectorprocurement.Asnewtechnologiesaredeployedandcostsdecline,thereislikelytobeastrongcasebyabout2030forreplacingtheseinitialmeasureswithotherssuchasCO2taxes,emissionstradingsystemsandemissionsperformancestandards.Financingsupportfornearzeroemiss

773、ionscapacityadditionsmayalsohaveanimportantroletoplaythroughmeasuressuchaslowinterestandconcessionalloansandblendedfinance,aswellasthroughcontributionsbyChapter 3 | Sectoral pathways to net-zero emissions by 2050 131 3advancedeconomiestofundsthatsupportprojectsinemergingmarketanddevelopingeconomies.

774、Strategiesshouldalsoincludemeasurestoreduceindustrialemissionsthroughmaterial efficiency, for example by revising design regulations, adopting incentives topromotelongerproductandbuildinglifetimes,andimprovingsystemsforcollectingandsortingmaterialsforrecycling.Thereisastrongcaseforaninternationalagr

775、eementonthetransitiontonearzeroemissionsfor globally traded products by the mid2020s so as to establish a level playing field.Alternatively, countries may need to resort to measures to shield domestic nearzeroemissionsproductionfromcompetitionfromproductsthatcreateemissions.Anysuchpolicywouldneedtob

776、edesignedtorespecttheregulatoryframeworksgoverninginternationaltrade,suchasthoseoftheWorldTradeOrganization.Evenwithacceleratedinnovationtimelinesandstrongpoliciesinplace,somehighemittingcapacityadditionswillbeneededtomeetdemandinthenextdecadebeforenearzeroemissionstechnologiesareavailable.Itwouldma

777、kesenseforgovernmentstorequireanynewcapacitytoincorporateretrofitreadydesignssothatunabatedcapacityaddedinthenextfewyearshasthetechnicalcapacityandspacerequirementtointegratenearzeroemissionstechnologiesincomingyears.Beyond2030,investmentintheNZEisconfinedtoinnovativenearzeroemissionsprocessroutes.G

778、overnmentsshouldnotoverlooktheneedformeasurestospurdeploymentofalreadyavailablenearzeroemissionstechnologiesinlightmanufacturingindustries.Adoptingacarbonpriceandthensufficientlyincreasingthepriceovertimethroughcarbontaxesoremissionstradingsystemsforlargermanufacturersmaybethesimplestwaytoachievetha

779、tobjective.Otherregulatorymeasuressuchastradeablelowcarbonfuelandemissionsstandardscouldyieldthesameoutcome,butmayinvolvegreateradministrativecomplexity.TechnologymandatesarelikelytobeneededtoachievetheenergyefficiencysavingsintheNZE,suchasminimumenergyperformancestandardsfornewmotorsandboilers.Tail

780、oredprogrammesandincentivesforsmallandmediumenterprisescouldalsoplayahelpfulrole.3.6 Transport3.6.1 EnergyandemissiontrendsintheNetZeroEmissionsScenarioTheglobaltransportsectoremittedover7GtCO2in2020,andnearly8.5Gtin2019beforetheCovid19pandemic.7IntheNZE,transportsectorCO2emissionsareslightlyover5.5

781、Gtin2030.By2050theyarearound0.7Gta90%droprelativeto2020levels.CO2emissionsdeclineevenwithrapidlyrisingpassengertravel,whichnearlydoublesby2050,andrisingfreightactivity,whichincreasesbytwoandahalftimesfromcurrentlevels,andanincreaseintheglobalpassengercarfleetfrom1.2billionvehiclesin2020tocloseto2bil

782、lionin2050.7Unlessotherwisenoted,CO2emissionsreportedherearedirectemissionsfromfossilfuelcombustedduringtheoperationofvehicles.IEA. All rights reserved.132 International Energy Agency | Special Report Thetransportmodesdonotdecarboniseatthesameratebecausetechnologymaturityvariesmarkedlybetweenthem(Fi

783、gure3.21).CO2emissionsfromtwo/threewheelersalmostceaseby2040,followedbycars,vansandrailinthelate2040s.Emissionsfromheavytrucks,shippingandaviationfallbyanannualaverageof6%between2020and2050,butstillcollectivelyamounttomorethan0.5GtCO2in2050.Thisreflectsprojectedactivitygrowthandthatmanyofthetechnolo

784、giesneededtoreduceCO2emissionsinlongdistancetransportarecurrentlyunderdevelopmentanddonotstarttomakesubstantialinroadsintothemarketinthecomingdecade.Figure 3.21 Global CO2 transport emissions by mode and share of emissions reductions to 2050 by technology maturity in the NZE IEA.Allrightsreserved.Pa

785、ssenger cars can make use of low-emissions technologies on the market, but major advances are needed for heavy trucks, shipping and aviation to reduce their emissions Notes: Other road = two/three wheelers and buses. Shipping and aviation include both domestic andinternationaloperations.SeeBox2.4for

786、detailsonthematuritycategories.DecarbonisationofthetransportsectorintheNZEreliesonpoliciestopromotemodalshiftsand more efficient operations across passenger transport modes (see sections2.5.7and4.4.3),8aswellasimprovementsinenergyefficiency.Italsodependsontwomajortechnologytransitions:shiftstowardse

787、lectricmobility(electricvehiclesEVsandfuelcellelectricvehiclesFCEVs)9andshiftstowardshigherfuelblendingratiosanddirectuseof8 Examples of efficient operations include: seamless integration of various modes (intermodality) and“MobilityasaService”inpassengertransport;logisticsmeasuresinroadfreight,e.g.

788、backhauling,nighttimedeliveries,realtimerouting;slowsteaminginshipping;andairtrafficmanagement,e.g.landingandtakeoffschedulinginaviation.9EVsincludebatteryelectricvehicles,pluginhybridelectricgasolinevehiclesandpluginhybridelectricdieselvehicles.FCEVscontainabatteryandelectricmotorandarecapableofope

789、ratingwithouttailpipeemissions.0203020402050GtCO2LightdutyvehiclesHeavytrucksOtherroadShippingAviationRailCOemissionsbymode25%50%75%100%HeavytrucksShippingAviationMatureMarketuptakeDemonstrationPrototypeTechnologymaturitybymodeChapter 3 | Sectoral pathways to net-zero emissions by 2050 13

790、3 3lowcarbon fuels (biofuels and hydrogenbased fuels). These shifts are likely to requireinterventionstostimulateinvestmentinsupplyinfrastructureandtoincentiviseconsumeruptake.Transporthastraditionallybeenheavilyreliantonoilproducts,whichaccountedformorethan 90% of transport sector energy needs in 2

791、020 despite inroads from biofuels andelectricity(Figure3.22).IntheNZE,theshareofoildropstolessthan75%in2030andslightlyover10%by2050.Bytheearly2040s,electricitybecomesthedominantfuelinthetransportsectorworldwideintheNZE:itaccountsfornearly45%oftotalfinalconsumptionin2050,followedbyhydrogenbasedfuels(

792、28%)andbioenergy(16%).Biofuelsalmostreacha15%blendingshareinoilproductsby2030inroadtransport,whichreducesoilneedsbyaround4.5millionbarrelsofoilequivalentperday(mboe/d).Beyond2030,biofuelsareincreasinglyusedforaviationandshipping,wherethescopeforusingelectricityandhydrogenismorelimited.Hydrogencarrie

793、rs(suchasammonia)andlowemissionssyntheticfuelsalsosupplyincreasingsharesofenergydemandinthesemodes.Figure 3.22 Global transport final consumption by fuel type and mode in the NZE IEA.Allrightsreserved.Electricity and hydrogen-based fuels account for more than 70% of transport energy demand by 2050 N

794、ote:LDVs=Lightdutyvehicles;Otherroad=two/threewheelersandbuses.RoadvehiclesElectrificationplaysacentralroleindecarbonisingroadvehiclesintheNZE.Batterycostdeclinesofalmost90%inadecadehaveboostedsalesofelectricpassengercarsby40%onaverage over the past five years. Battery technology is already relative

795、ly commerciallycompetitive.FCEVsstarttomakeinroadsinthe2020sintheNZE.Theelectrificationofheavytrucks moves more slowly due to the weight of the batteries, high energy and power30609020402050EJOtherAviationShippingRailHeavytrucksLDVsOtherroadHydrogenbasedfuelsBioenergyElectricityFossilfuel

796、sConsumptionbyfuel202020302050ConsumptionbymodeFuelsModesIEA. All rights reserved.134 International Energy Agency | Special Report requirementsrequiredforcharging,andlimitsondrivingranges.Butfuelcellheavytrucksmakesignificantprogress,mainlyafter2030(Figure3.23).Thenumberofbatteryelectric,pluginhybri

797、dandfuelcellelectriclightdutyvehicles(carsandvans)ontheworldsroadsreaches350millionin2030andalmost2billionin2050,upfrom11millionin2020.Thenumberofelectrictwo/threewheelersalsorisesrapidly,fromjustunder300milliontodayto600millionin2030and1.2billionin2050.Theelectricbusfleetexpandsfrom0.5millionin2020

798、to8millionin2030and50millionin2050.Figure 3.23 Global share of battery electric, plug-in hybrid and fuel cell electric vehicles in total sales by vehicle type in the NZE IEA.Allrightsreserved.Sales of battery electric, plug-in hybrid and fuel cell electric vehicles soar globally Note:Lightdutyvehicl

799、es=passengercarsandvans;Heavytrucks=mediumandheavyfreighttrucks.Lightdutyvehiclesareelectrifiedfasterinadvancedeconomiesoverthemediumtermandaccountforaround75%ofsalesby2030.Inemerginganddevelopingeconomies,theyaccountforabout50%ofsales.Almostalllightdutyvehiclesalesinadvancedeconomiesarebatteryelect

800、ric,pluginhybridorfuelcellelectricbytheearly2030sandinemerginganddevelopingeconomiesbythemid2030s.Forheavytrucksthatoperateoverlongdistances,currentlybiofuelsarethemainviablecommercialalternativetodiesel,andtheyplayanimportantroleinloweringemissionsfromheavydutytrucksoverthe2020s.Beyond2030,thenumbe

801、rofelectricandhydrogenpoweredheavytrucksincreasesintheNZEassupportinginfrastructureisbuiltandascostsdecline(lowerbatterycosts,energydensityimprovementsandlowercoststoproduceanddeliver hydrogen) (IEA, 2020b). This coincides with a reduction in the availability ofsustainablebioenergy,aslimitedsupplies

802、increasinglygotohardtoabatesegmentssuchasaviationandshipping,thoughbiofuelsstillmeetabout10%offuelneedsforheavydutytrucksin2050(seeChapter2).Advancedeconomieshaveahighermarketshareofbattery20%40%60%80%100%202020302050202020302050202020302050BatteryelectricPluginhybridelectricFuelcellelectricLightdut

803、yvehiclesHeavytrucksTwo/threewheelersChapter 3 | Sectoral pathways to net-zero emissions by 2050 135 3electricandfuelcellelectricheavydutytruckssalesin2030,morethantwicethelevelinemergingmarketanddevelopingeconomies,althoughthisgapclosestowards2050.Figure 3.24 Heavy trucks distribution by daily driv

804、ing distance, 2050 IEA.Allrightsreserved.Driving distance is the key factor affecting powertrain choice for trucks RealisingtheobjectivesoftheNZEdependsonrapidscalingupofbatterymanufacturing(currentannouncedproductioncapacityfor2030wouldcoveronly50%ofrequireddemandin that year), and on the rapid int

805、roduction on the market of next generation batterytechnology(solidstatebatteries)between2025and2030.Electrifiedroadsystemsusingconductiveorinductivepowertransfertoprovideelectricitytotrucksofferanalternativeforbatteryelectricandfuelcellelectrictrucksonlongdistanceoperations,butthesesystemstoowouldne

806、edrapiddevelopmentanddeployment.Aviation10TheNZEassumesthatairtravel,measuredinrevenuepassengerkilometres,increasesbyonlyaround3%peryearto2050relativeto2020.Thiscompareswithaboutaround6%overthe201019period.TheNZEassumesthataviationgrowthisconstrainedbycomprehensivegovernmentpoliciesthatpromoteashift

807、towardshighspeedrailandreininexpansionoflonghaul business travel, e.g. through taxes on commercial passenger flights (seesection2.5.2).GlobalCO2emissionsfromaviationriseintheNZEfromabout640Mtin2020(downfromaround1Gtin2019)toapeakof950Mtbyaround2025.Emissionsthenfallto210Mtin2050astheuseoflowemission

808、sfuelsgrows.Emissionsarehardtoabatebecauseaviation10Aviationconsideredhereincludesbothdomesticandinternationalflights.Whilethefocushereisoncommercial passenger aviation, dedicated freight and general (military and private) aviation, whichcollectivelyaccountformorethan10%offueluseandemissions,arealso

809、includedintheenergyandemissionsaccounting.0.05%0.10%0.15%0.20%0.25%02004006008001000ProbabilitydensityDailydrivingdistance(km)BatteryelectricFuelcellelectricIEA. All rights reserved.136 International Energy Agency | Special Report requiresfuelwithahighenergydensity.Emissionsinaviationcomprisejustove

810、r10%ofunabatedCO2emissionsfromfossilfuelsandindustrialprocessesin2050.IntheNZE,theglobaluseofjetkerosenedeclinestoabout3EJin2050from9EJin2020(andaround14.5EJin2019beforetheCovid19crisis),anditsshareoftotalenergyusefallsfromalmost100%tojustover20%.Theuseofsustainableaviationfuel(SAF)startstoincreases

811、ignificantlyinthelate2020s.In2030,around15%oftotalfuelconsumptioninaviationisSAF,mostofwhichisbiojetkerosene(atypeofliquidbiofuel).Thisisestimatedtoincreasetheticketpriceforamidhaulflight(1200km)byaboutUSD3perpassenger.By2050, biojet kerosene meets 45% of total fuel consumption in aviation and synth

812、etichydrogenbasedfuelsmeetabout30%.Thisisestimatedtoincreasetheticketpriceforamidhaulflightin2050byaboutUSD10perpassenger.TheNZEalsoseestheadoptionofcommercialbatteryelectricandhydrogenaircraftfrom2035,buttheyaccountforlessthan2%offuelconsumptionin2050.Operationalimprovements,togetherwithfuelefficie

813、ncytechnologiesforairframesandengines,alsohelptoreduceCO2emissionsbycurbingthepaceoffueldemandgrowthintheNZE.Theseimprovementsareincremental,butrevolutionarytechnologiessuchasopenrotors,blendedwingbodyairframesandhybridisationcouldbringfurthergainsandenabletheindustrytomeettheInternationalCiviIAviat

814、ionOrganizations(ICAO)ambitious2050efficiencytargets(IEA,2020b).Maritimeshipping11Maritimeshippingwasresponsibleforaround830MtCO2emissionsworldwidein2020(880MtCO2in2019),whichisaround2.5%oftotalenergysectoremissions.Duetoalackofavailable lowcarbon options on the market and the long lifetime of vesse

815、ls (typically2535years), shipping is one of the few transport modes that does not achieve zeroemissionsby2050intheNZE.Nevertheless,emissionsfromshippingdeclineby6%annuallyto120MtCO2in2050.Intheshortterm,thereisconsiderablepotentialforcurbingfuelconsumptioninshippingthroughmeasurestooptimiseoperation

816、alefficiencyandimproveenergyefficiency.Suchapproachesincludeslowsteamingandtheuseofwindassistancetechnologies(IEA,2020b).Inthemediumtolongterm,significantemissionsreductionsareachievedintheNZEbyswitchingtolowcarbonfuelssuchasbiofuels,hydrogenandammonia.Ammonialookslikelyto be a particularly good can

817、didate for scaling up, and a critical fuel for longrangetransoceanicjourneysthatneedfuelwithhighenergydensity.AmmoniaandhydrogenarethemainlowcarbonfuelsforshippingadoptedoverthenextthreedecadesintheNZE,theircombinedshareoftotalenergyconsumptioninshippingreachingaround60%in2050.The20largestportsinthe

818、worldaccountformorethanhalfofglobalcargo(UNCTAD,2018);theycouldbecomeindustrialhubstoproducehydrogenand11Maritimeshippinghereincludesbothdomesticandinternationaloperations.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 137 3ammoniaforuseinbothchemicalandrefiningindustries,aswellasforref

819、uellingships.Internalcombustionenginesforammoniafuelledvesselsarecurrentlybeingdevelopedbytwoofthelargestmanufacturersofmaritimeenginesandareexpectedtobecomeavailableonthemarketby2024.Sustainablebiofuelsprovidealmost20%oftotalshippingenergyneedsin2050.Electricityplaysaveryminorrole,astherelativelylo

820、wenergydensityofbatteriescomparedwithliquidfuelsmakesitsuitableonlyforshippingroutesofupto200km.Evenwithan85%increaseinbatteryenergydensityintheNZEassolidstatebatteriescometomarket,onlyshortdistanceshippingroutescanbeelectrified.RailRailtransportisthemostenergyefficientandleastcarbonintensivewaytomo

821、vepeopleandsecondonlytoshippingforcarryinggoods.Passengerrailalmostdoublesitsshareoftotaltransportactivityto20%by2050intheNZE,withparticularlyrapidgrowthinurbanandhighspeedrail(HSR),thelatterofwhichcontributestocurbinggrowthinairtravel.GlobalCO2emissionsfromtherailsectorfallfrom95MtCO2in2020(100MtCO

822、2in2019)toalmostzeroby2050intheNZE,drivenprimarilybyrapidelectrification.Figure 3.25 Global energy consumption by fuel and CO2 intensity in non-road sectors in the NZE IEA.Allrightsreserved.Railways rely heavily on electricity to decarbonise, while shipping and aviation curb emissions mainly by swit

823、ching to low-emissions fuels Note:Syntheticfuel=lowemissionssynthetichydrogenbasedfuels.IntheNZE,allnewtracksonhighthroughputcorridorsareelectrifiedfromnowon,whilehydrogenandbatteryelectrictrains,whichhaverecentlybeendemonstratedinEurope,areadoptedonraillineswherethroughputistoolowtomakeelectrificat

824、ioneconomicallyviable.Oiluse,whichaccountedfor55%oftotalenergyconsumptionintherailsectorin2020,fallstoalmostzeroin2050:itisreplacedbyelectricity,whichprovidesover90%ofrailenergyneedsandbyhydrogenwhichprovidesanother5%.0%40%60%80%100%2020 2030 2040 20502020 2030 2040 20502020 2030 2040 205

825、0gCO/MJOilGasBioenergyHydrogenAmmoniaElectricitySyntheticfuelCOintensityRailMaritimeshippingAviation(rightaxis)IEA. All rights reserved.138 International Energy Agency | Special Report 3.6.2 KeymilestonesanddecisionpointsTable 3.4 Key milestones in transforming the global transport sector CategoryRo

826、adtransport 2035:nonewpassengerinternalcombustionenginecarsalesgloballyAviationandshipping Implementationofstrictcarbonemissionsintensityreductiontargetsassoonaspossible.Category202020302050RoadtransportShareofPHEV,BEVandFCEVinsales:cars5%64%100%two/threewheelers40%85%100%bus3%60%100%vans0%72%100%he

827、avytrucks0%30%99%Biofuelblendinginoilproducts5%13%41%RailShareofelectricityandhydrogenintotalenergyconsumption43%65%96%Activityincreaseduetomodalshift(index2020=100)100100130AviationSynthetichydrogenbasedfuelsshareintotalaviationenergyconsumption0%2%33%Biofuelsshareintotalaviationenergyconsumption0%

828、16%45%Avoideddemandfrombehaviourmeasures(index2020=100)02038ShippingShareintotalshippingenergyconsumption:Ammonia0%8%46%Hydrogen0%2%17%Bioenergy0%7%21%InfrastructureEVpubliccharging(millionunits)1.340200Hydrogenrefuellingunits5401800090000Shareofelectrifiedraillines34%47%65%Note:PHEV=pluginhybridele

829、ctricvehicles;BEV=batteryelectricvehicles;FCEV=fuelcellelectricvehicles.ElectrificationisthemainoptiontoreduceCO2emissionsfromroadandrailmodes,thetechnologiesarealreadyonthemarketandshouldbeacceleratedimmediately,togetherwiththerolloutofrecharginginfrastructureforEVs.Deepemissionreductionsinthehardt

830、oabatesectors(heavytrucks,shippingandaviation)requireamassivescaleupoftherequiredtechnologiesoverthenextdecade,whichtodayarelargelyattheprototypeanddemonstrationstages,togetherwithplansforthedevelopmentofassociatedinfrastructure,includinghydrogenrefuellingstations.Chapter 3 | Sectoral pathways to ne

831、t-zero emissions by 2050 139 3ThetransformationoftransportrequiredtobeontracktoreduceemissionsinlinewiththeNZEcallsforarangeofgovernmentdecisionsoverthenextdecade.Inthenextfewyears,allgovernmentsneedtoeliminatefossilfuelsubsidiesandencourageswitchingtolowcarbontechnologiesandfuelsacrosstheentiretran

832、sportsector.Before2025,governmentsneedtodefineclearR&Dprioritiesforallthetechnologiesthatcancontributetodecarbonisetransportinlinewiththeirstrategicprioritiesandneeds.Ideallythiswouldbeinformedbyinternationaldialogueandcollaboration.R&Discriticalinparticularforbatterytechnology,whichshouldbeanimmedi

833、atepriority.ToachievetheemissionsreductionsrequiredbytheNZE,governmentsalsoneedtomovequicklytosignaltheendofsalesofnewinternalcombustionenginecars.Earlycommitmentswouldhelptheprivatesectortomakethenecessaryinvestmentinnewpowertrains,relativesupplychainsandrefuellinginfrastructure(seesection4.3.4).Th

834、isisparticularlyimportantforthesupplyofbatterymetals,whichrequirelongtermplanning(IEA,2021a).By2025,thelargescaledeploymentofEVpubliccharginginfrastructureinurbanareasneedstobesufficientlyadvancedtoallowhouseholdswithoutaccesstoprivatechargerstoopt for EVs. Governments should ensure sustainable busi

835、ness models for companiesinstallingchargers,removebarrierstoplanningandconstruction,andputinplaceregulatory,fiscalandtechnologicalmeasurestoenableandencouragesmartcharging,andtoensurethatEVssupportelectricitygridstabilityandstimulatetheadoptionofvariablerenewables(IEA,2021b).Forheavytrucks,batteryel

836、ectrictrucksarejustbeginningtobecomeavailableonthemarket,andfuelcellelectrictechnologiesareexpectedtocometomarketinthenextfewyears.Workingincollaborationwithtruckmanufacturers,governmentsshouldtakestepsintheneartermtoprioritisetherapidcommercialadoptionofbatteryelectricandfuelcellelectrictrucks.By20

837、30,theyshouldtakestockofthecompetitiveprospectsforthesetechnologies,soastofocusR&Donthemostimportantchallengesandallowadequatetimeforstrategicinfrastructuredeployment,thuspavingthewayforlargescaleadoptionduringthe2030s.Governmentsneedtodefinetheirstrategiesforlowcarbonfuelsinshippingandaviationby202

838、5atthelatest,giventheslowturnoverrateofthefleets,afterwhichtheyshouldrapidlyimplementthem.Internationalcooperationandcollaborationwillbecrucialtosuccess.Priorityactionshouldtargetthemostheavilyusedportsandairportssoastomaximisetheimpactofinitialinvestment.Harboursnearindustrialareasareideallyplacedt

839、obecomelowcarbonfuelhubs.IEA. All rights reserved.140 International Energy Agency | Special Report Box 3.3 What would be the implications of an all-electric approach to emissions reductions in the road transport sector? TheuseofavarietyoffuelsinroadtransportisacorecomponentoftheNZE.However,governmen

840、tsmightwanttoconsideranallelectricroutetoeliminateCO2emissionsfromtransport,especiallyifothertechnologiessuchasFCEVsandadvancedbiofuelsfailtodevelopasprojected.WehavethereforedevelopedanAllElectricCasewhichlooksattheimplicationsofelectrifyingallroadvehiclemodes.IntheNZE,decarbonisationofroadtranspor

841、toccursprimarilyviatheadoptionofpluginhybridelectricvehicles(PHEVs),batteryelectricvehicles(BEVs),fuelcellelectricvehicles(FCEVs)andadvancedbiofuels.TheAllElectricCaseassumesthesamerateofroadtransportdecarbonisationastheNZE,butachievedviabatteryelectricvehiclesalone.TheAllElectricCasedependsonevenfu

842、rtheradvancesinbatterytechnologiesthantheNZEthatleadtoenergydensitiesofatleast400Watthoursperkilogramme(Wh/kg)bythe2030satcoststhatwouldmakeBEVtruckspreferabletoFCEVtrucksinlonghauloperations.Thiswouldmean30%moreBEVs(anadditional350million)ontheroadin2030thanintheNZE.Oversixtyfivemillionpubliccharge

843、rswouldbeneededtosupportthevehicles,requiringacumulativeinvestmentofaroundUSD300billion,35%higherthantheNZE.Thiswouldrequirefasterexpansionofbatterymanufacturing.TheannualglobalbatterycapacityadditionsforBEVsin2030wouldbealmost9TWh,requiring80gigafactories(assuming35GWhperyearoutput)morethanintheNZE

844、,oranaverageofovertwopermonthfromnowto2030.Theincreaseduseofelectricityforroadtransportwouldalsocreateadditionalchallengesfortheelectricitysector.Thetotalelectricitydemandforroadtransport(11000TWhor15%oftotalelectricityconsumptionin2050),wouldberoughlythesameinbothcases,whenaccountistakenofdemandfor

845、electrolytichydrogen.However,theelectrolytichydrogenintheNZEcanbeproducedflexibly,inregionsandattimeswithsurplusrenewablesbasedcapacityandfromdedicated(offgrid)renewablepower.PeakpowerdemandintheAllElectricCase,takingintoconsiderationtheflexibilitythatenablessmartchargingofcars,isaboutonethird(2000G

846、W)higherthanintheNZE,mainlyduetotheadditionalevening/overnightchargingofbusesandtrucks.Ifnotcoupledwithenergystoragedevices,ultrafastchargersforheavydutyvehiclescouldcauseadditionalspikesindemand,puttingevenmorestrainonelectricitygrids.While full electrification of road transport is possible, it cou

847、ld involve additionalchallenges and undesirable side effects. For example, it could increase pressure onelectricity grids, requiring significant additional investment, and increasing thevulnerabilityofthetransportsystemtopowerdisruptions.Fueldiversificationcouldbringbenefitsintermsofresilienceandene

848、rgysecurity.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 141 3Figure 3.26 Global electricity demand and battery capacity for road transport in the NZE and the All-Electric Case IEA.Allrightsreserved.Both direct electricity consumption and vehicle battery capacity in 2050 increase by a

849、bout a quarter in the All-Electric Case relative to the NZE Note:AEC=AllElectricCase.3.7 Buildings3.7.1 EnergyandemissiontrendsintheNetZeroEmissionsScenarioFloorareainthebuildingssectorworldwideisexpectedtoincrease75%between2020and2050,ofwhich80%isinemergingmarketanddevelopingeconomies.Globally,floo

850、rareaequivalenttothesurfaceofthecityofParisisaddedeveryweekthroughto2050.Moreover,buildingsinmanyadvancedeconomieshavelonglifetimesandaroundhalfoftheexistingbuildingsstockwillstillbestandingin2050.Demandforappliancesandcoolingequipmentcontinues to grow, especially in emerging market and developing e

851、conomies where650millionairconditionersareaddedby2030andanother2billionby2050intheNZE.Despitethisdemandgrowth,totalCO2emissionsfromthebuildingssectordeclinebymorethan95%fromalmost3Gtin2020toaround120Mtin2050intheNZE.12Energyefficiencyandelectrificationarethetwomaindriversofdecarbonisationofthebuildi

852、ngssectorintheNZE(Figure3.27).Thattransformationreliesprimarilyontechnologies12AllCO2emissionsinthissectionrefertodirectCO2emissionsunlessotherwisespecified.TheNZEalsopursuesreductionsinemissionslinkedtoconstructionmaterialsusedinbuildings.Theseembodiedemissionsarecutby40%persquaremetreofnewfloorare

853、aby2030,withmaterialefficiencystrategiescuttingcementandsteeluseby50%by2050relativetotodaythroughmeasuresatthedesign,construction,useandendoflifephases.4000800030205020302050NZEAECTWhTwo/threewheelersBusesCarsandvansHeavytrucksElectrolyticHElectricitydemand202030205020302050NZE

854、AECTWhOnroadbatterycapacityIEA. All rights reserved.142 International Energy Agency | Special Report already available on the market, including improved envelopes for new and existingbuildings,heatpumps,energyefficientappliances,andbioclimaticandmaterialefficientbuilding design. Digitalisation and s

855、mart controls enable efficiency gains that reduceemissionsfromthebuildingssectorby350MtCO2by2050.BehaviourchangesarealsoimportantintheNZE,withareductionofalmost250MtCO2in2030reflectingchangesintemperature settings for space heating or reducing excessive hot water temperatures.Additionalbehaviourchan

856、gessuchasgreateruseofcoldtemperatureclotheswashingandlinedrying,facilitatethedecarbonisationof electricitysupply.Thereisscopeforthesereductionstobeachievedrapidlyandatnocost.Figure 3.27 Global direct CO2 emissions reductions by mitigation measure in buildings in the NZE IEA.Allrightsreserved.Electri

857、fication and energy efficiency account for nearly 70% of buildings-related emissions reductions through to 2050, followed by solar thermal, bioenergy and behaviour Notes:Activity=changeinenergyservicedemandrelatedtorisingpopulation,increasedfloorareaandincomepercapita.Behaviour=changeinenergyservice

858、demandfromuserdecisions,e.g.changingheatingtemperatures.Avoideddemand=changeinenergyservicedemandfromtechnologydevelopments,e.g.digitalisation.Rapidshiftstozerocarbonreadytechnologiesseetheshareoffossilfuelsinenergydemandinthebuildingssectordropto30%by2030,andto2%by2050intheNZE.Theshareofelectricity

859、intheenergymixreachesalmost50%by2030and66%by2050,upfrom33%in2020(Figure3.28).AllendusestodaydominatedbyfossilfuelsareincreasinglyelectrifiedintheNZE,withtheshareofelectricityinspaceheating,waterheatingandcookingincreasingfromlessthan20%todaytomorethan40%in2050.Districtenergynetworksandlowcarbongases

860、,includinghydrogenbasedfuels,remainsignificantin2050inregionswithhighheatingneeds,denseurbanpopulationsandexistinggasordistrictheatnetworks.BioenergymeetsnearlyonequarterofoverallheatdemandintheNZEby2050,over50%ofbioenergyuseisforcooking,nearlyallinemergingmarketanddevelopingeconomies,where2.7billio

861、n02050GtCO2ActivityBehaviourandavoideddemandEnergyefficiencyElectrificationHydrogenbasedBioenergyOtherrenewablesOtherfuelshifts+29%51%+96%97%MeasuresMitigationmeasuresActivityChapter 3 | Sectoral pathways to net-zero emissions by 2050 143 3peoplegainaccesstocleancookingby2030intheNZE.Spac

862、eheatingdemanddropsbytwothirdsbetween2020and2050,drivenbyimprovementinenergyefficiencyandbehaviouralchangessuchastheadjustmentoftemperaturesetpoints.Figure 3.28 Global final energy consumption by fuel and end-use application in buildings in the NZE IEA.Allrightsreserved.Fossil fuel use in the buildi

863、ngs sector declines by 96% and space heating energy needs by two-thirds to 2050, thanks mainly to energy efficiency gains Note:Otherincludesdesalinationandtraditionaluseofsolidbiomasswhichisnotallocatedtoaspecificenduse.ZerocarbonreadybuildingsTheNZEpathwayforthebuildingssectorrequiresastepchangeimp

864、rovementintheenergyefficiencyandflexibilityofthestockandacompleteshiftawayfromfossilfuels.Toachievethis,morethan85%ofbuildingsneedtocomplywithzerocarbonreadybuildingenergycodesby2050(Box3.4).Thismeansthatmandatoryzerocarbonreadybuildingenergycodesforallnewbuildingsneedtobeintroducedinallregionsby203

865、0,andthatretrofitsneedtobecarriedoutinmostexistingbuildingsby2050toenablethemtomeetzerocarbonreadybuildingenergycodes.Retrofitratesincreasefromlessthan1%peryeartodaytoabout2.5%peryearby2030inadvancedeconomies:thismeansthataround10milliondwellingsareretrofittedeveryyear.Inemergingmarketanddevelopinge

866、conomies,buildinglifetimesaretypicallylowerthaninadvancedeconomies,meaningthatretrofitratesby2030intheNZEarelower,ataround2%peryear.Thisrequirestheretrofittingof20milliondwellingsperyearonaverageto2030.Toachievesavingsatthe lowestcostand tominimisedisruption,retrofitsneedtobecomprehensiveandoneoff.2

867、550750302020205020302020EJSpaceheatingWaterheatingSpacecoolingLightingCookingAppliancesOtherCoalOilNaturalgasHydrogenElectricityDistrictenergyRenewablesTraditionaluseofByfuelByenduseEndusesFuelsbiomassIEA. All rights reserved.144 International Energy Agency | Special Report Box 3.4 Toward

868、s zero-carbon-ready buildings Achieving decarbonisation of energy use in the sector requires almost all existingbuildingstoundergoasingleindepthretrofitby2050,andnewconstructiontomeetstringentefficiencystandards.Buildingenergycodescoveringnewandexistingbuildingsarethefundamentalpolicyinstrumenttodri

869、vesuchchanges.Buildingenergycodescurrentlyexistorareunderdevelopmentinonly75countries,andcodesinaround40ofthesecountriesaremandatoryforboththeresidentialandservicessubsectors.IntheNZE,comprehensivezerocarbonreadybuildingcodesareimplementedinallcountriesby2030atthelatest.Whatisazerocarbonreadybuildin

870、g?Azerocarbonreadybuildingishighlyenergyefficientandeitherusesrenewableenergydirectly, or uses an energy supply that will be fully decarbonised by 2050, such aselectricityordistrictheat.Thismeansthatazerocarbonreadybuildingwillbecomeazerocarbon building by 2050, without any further changes to the bu

871、ilding or itsequipment.Zerocarbonreadybuildingsshouldadjusttouserneedsandmaximisetheefficientandsmart use of energy, materials and space to facilitate the decarbonisation of othersectors.Keyconsiderationsinclude: Scope.Zerocarbonreadybuildingenergycodesshouldcoverbuildingoperations(scope1and2)aswell

872、asemissionsfromthemanufacturingofbuildingconstructionmaterialsandcomponents(scope3orembodiedcarbonemissions). Energyuse.Zerocarbonreadyenergycodesshouldrecognisetheimportantpartthat passive design features, building envelope improvements and high energyperformance equipment play in lowering energy d

873、emand, reducing both theoperatingcostofbuildingsandthecostsofdecarbonisingtheenergysupply. Energysupply.Wheneverpossible,newandexistingzerocarbonreadybuildingsshouldintegratelocallyavailablerenewableresources,e.g.solarthermal,solarPV,PVthermalandgeothermal,toreducetheneedforutilityscaleenergysupply.

874、Thermal or battery energy storage may be needed to support local energygeneration. Integrationwithpowersystems.Zerocarbonreadybuildingenergycodesneedbuildingstobecomeaflexibleresourcefortheenergysystem,usingconnectivityandautomationtomanagebuildingelectricitydemandandtheoperationofenergystoragedevic

875、es,includingEVs. Buildingsandconstructionvaluechain.Zerocarbonreadybuildingenergycodesshould also target netzero emissions from material use in buildings. Materialefficiencystrategiescancutcementandsteeldemandinthebuildingssectorbymorethanathirdrelativetobaselinetrends,andembodiedemissionscanbefurth

876、erreduced by more robust uptake of biosourced and innovative constructionmaterials.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 145 3HeatingandcoolingBuildingenvelopeimprovementsinzerocarbonreadyretrofitandnewbuildingsaccountforthemajorityofheatingandcoolingenergyintensityreductionsin

877、theNZE,butheatingandcoolingtechnologyalsomakesasignificantcontribution.SpaceheatingistransformedintheNZE,withhomesheatedbynaturalgasfallingfromnearly30%ofthetotaltodaytolessthan0.5%in2050,whilehomesusingelectricityforheatingrisefromnearly20%ofthetotaltodayto35%in2030andabout55%in2050(Figure3.29).Hig

878、hefficiencyelectricheatpumpsbecometheprimarytechnologychoiceforspaceheatingintheNZE,withworldwideheatpumpinstallationspermonthrisingfrom1.5milliontodaytoaround5millionby2030and10millionby2050.Hybridheatpumpsarealsousedinsomeofthecoldestclimates,butmeetnomorethan5%ofheatingdemandin2050.Figure 3.29 Gl

879、obal building and heating equipment stock by type and useful space heating and cooling demand intensity changes in the NZE IEA.Allrightsreserved.By 2050, over 85% of buildings are zero-carbon-ready, reducing average useful heating intensity by 75%, with heat pumps meeting over half of heating needs

880、Notes:ZCRBreferstobuildingsmeetingzerocarbonreadybuildingenergycodes.Otherforbuildingenvelopereferstoenvelopesthatdonotmeetzerocarbonreadybuildingenergycodes.Otherforheatingequipmentstockincludesresistiveheaters,andhybridandgasheatpumps.Notallbuildingsarebestdecarbonisedwithheatpumps,however,andbioe

881、nergyboilers,solarthermal,districtheat,lowcarbongasesingasnetworksandhydrogenfuelcellsallplayaroleinmakingtheglobalbuildingstockzerocarbonreadyby2050.Bioenergymeets10%ofspaceheatingneedsby2030andmorethan20%by2050.Solarthermalisthepreferredrenewabletechnologyforwaterheating,especiallywhereheatdemandi

882、slow;intheNZEitmeets 35% of demand by 2050, up from 7% today. District heat networks remain anattractive option for many compact urban centres where heat pump installation isimpractical,intheNZEtheyprovidemorethan20%offinalenergydemandforspaceheatingin2050,upfromalittleover10%today.255075

883、0400202020302050Index(2020=100)BillionmRetrofitZCRBNewZCRBOtherHeatingCoolingBuildingenvelopeIntensity (rightaxis):02050BillionunitsCoalandoilGasDistrictheatBiomassSolarthermalHydrogenHeatpumpsOtherHeatingequipmentstockIEA. All rights reserved.146 International Energy Agency | Special Rep

884、ort Therearenonewcoalandoilboilerssoldgloballyfrom2025intheNZE.Salesofgasboilersfallbymorethan40%fromcurrentlevelsby2030andby90%by2050.By2025intheNZE,anygasboilersthataresoldarecapableofburning100%hydrogenandthereforearezerocarbonready.Theshareoflowcarbongases(hydrogen,biomethane,syntheticmethane)in

885、gasdistributedtobuildingsrisesfromalmostzeroto10%by2030toabove75%by2050.Buildingsthatmeetthestandardsofzerocarbonreadybuildingenergycodesdrivedowntheneednotonlyforspaceheatingbutalsoforspacecoolingthefastestgrowingendusein buildings since 2000. Space cooling represented only 5% of total buildings en

886、ergyconsumptionworldwidein2020,butdemandforcoolingislikelytogrowstronglyinthecomingdecadeswithrisingincomesandahotterclimate.IntheNZE,60%ofhouseholdshaveanairconditionerin2050,upfrom35%in2020.Highperformancebuildingenvelopes,includingbioclimaticdesignsandinsulation,canreducethedemandforspacecoolingb

887、y3050%,whileprovidinggreaterresilienceduringextremeheatevents.IntheNZE,electricitydemandforspacecoolinggrows annuallyby1%toreach2500TWhin 2050.Without2000TWhofsavingsfromresidentialbuildingenvelopeimprovementsandhigherefficiencyequipment,spacecoolingdemandwouldbealmosttwiceashigh.Appliancesandlighti

888、ngElectricappliancesandlightingbecomemuchmoreefficientoverthenextthreedecadesintheNZEthankstopolicymeasuresandtechnicaladvances.By2025intheNZE,over80%ofall appliances and air conditioners sold in advanced economies are the best availabletechnologiestodayinthesemarkets,andthisshareincreasesto100%byth

889、emid2030s.Inemergingmarketanddevelopingeconomies,whichaccountforoverhalfofappliancesandairconditionersby2050,theNZEassumesawaveofpolicyactionoverthenextdecadewhichleadsto80%ofequipmentsoldinthesemarketsin2030beingasefficientasthebestavailabletechnologiesinadvancedeconomiestoday,increasingtocloseto10

890、0%by2050(Figure3.30).Theshareoflightemittingdiode(LED)lampsintotallightbulbsalesreaches100%by2025inallregions.Minimumenergyperformancestandardsarecomplementedbyrequirements for smart control of appliances to facilitate demandside response in allregions.Energyuseinbuildingswillbeincreasinglyfocusedon

891、electric,electronicandconnectedequipmentandappliances.Theshareofelectricityinenergyconsumptioninbuildingsrisesfrom33%in2020toaroundtwothirdsin2050intheNZE,withmanybuildingsincorporatingdecentralised electricity generation using local solar PV panels, battery storage and EVchargers.Thenumberofresiden

892、tialbuildingswithsolarPVpanelsincreasesfrom25millionto240millionoverthesameperiod.IntheNZE,smartcontrolsystemsshiftflexibleusesofelectricity in time to correspond with generation from local renewables, or to provideflexibilityservicestothepowersystem,whileoptimisedhomebatteryandEVchargingallowhouseh

893、oldstointeractwiththegrid.Thesedevelopmentshelpimproveelectricitysupplysecurityandlowerthecostoftheenergytransitionbymakingiteasierandcheapertointegraterenewablesintothesystem.Chapter 3 | Sectoral pathways to net-zero emissions by 2050 147 3Figure 3.30 Global change in electricity demand by end-use

894、in the buildings sector IEA.Allrightsreserved.Energy efficiency is critical to mitigate electricity demand growth for appliances and air conditioning, with savings more than offsetting the impact of electrifying heat 3.7.2 KeymilestonesanddecisionpointsTable 3.5 Key milestones in transforming global

895、 buildings sector CategoryNewbuildings From2030:allnewbuildingsarezerocarbonready.Existingbuildings From2030:2.5%ofbuildingsareretrofittedtobezerocarbonreadyeachyear.Category202020302050BuildingsShareofexistingbuildingsretrofittedtothezerocarbonreadylevel85%Shareofzerocarbonreadynewbuildingsconstruc

896、tion5%100%100%HeatingandcoolingStockofheatpumps(millionunits)1806001800Milliondwellingsusingsolarthermal2504001200Avoidedresidentialenergydemandfrombehaviourn.a.12%14%AppliancesandlightingAppliances:unitenergyconsumption(index2020=100)1007560Lighting:shareofLEDinsales50%100%100%EnergyaccessPopulatio

897、nwithaccesstoelectricity(billionpeople)7.08.59.7Populationwithaccesstocleancooking(billionpeople)5.18.59.7EnergyinfrastructureinbuildingsDistributedsolarPVgeneration(TWh)32022007500EVprivatechargers(millionunits)2700302020ActivityElectrificationEfficiencyBehaviour2050ThousandTWhHeatneedsA

898、ppliancesSpacecoolingLighting+101%+37%93%9%IEA. All rights reserved.148 International Energy Agency | Special Report Neartermgovernmentdecisionsarerequiredforenergycodesandstandardsforbuildings,fossil fuel phase out, use of lowcarbon gases, acceleration of retrofits and financialincentivestoencourag

899、einvestmentinbuildingsectorenergytransitions.Decisionswillbemosteffectiveiftheyfocusondecarbonisingtheentirevaluechain,takingintoaccountnotonlybuildingsbutalsotheenergyandinfrastructurenetworksthatsupplythem,aswellaswiderconsiderationsincludingtheroleoftheconstructionsectorandurbanplanning.Suchdecis

900、ionsarelikelytobringwiderbenefits,notablyinreducingfuelpoverty.Neartermgovernmentactionisneededtoensurethatzerocarbonreadybuildingsbecomethenewnormacrosstheworldbefore2030forbothnewconstructionandretrofits.Thisrequires governments to act before 2025 to ensure that zerocarbonready compliantbuildingen

901、ergycodesareimplementedby2030atthelatest.Whilethisgoalappliestoallregions,waystoachievezerocarbonreadybuildingsvarysignificantlyacrossregionsandclimate zones, and the same is true for heating and cooling technology strategies.Governmentsshouldconsiderpavingthewaybymakingpublicbuildingszerocarbonread

902、yinthecomingdecade.Governmentswillneedtofindwaystomakenewzerocarbonreadybuildingsandretrofitsaffordable and attractive to owners and occupants by overcoming financial barriers,addressingsplitincentivebarriersandminimisingdisruptiontobuildinguse.Buildingenergyperformancecertificates,greenleaseagreeme

903、nts,greenbondfinancingandpayasyousavemodelscouldallplayapart.Makingzerocarbonreadybuildingretrofitsacentralpillarofeconomicrecoverystrategiesintheearly2020sisanoregretsactiontojumpstartprogresstowardsazeroemissionsbuildingsector.Foregoingtheopportunitytomakeenergyuseinbuildingsmoreefficientwoulddriv

904、eupelectricitydemandlinkedtoelectrificationofenergyuseinthebuildingssectorandmakedecarbonisingtheenergysystemsignificantlymoredifficultandmorecostly(Box3.5).Box 3.5 What would be the impact of global retrofit rates not rising to 2.5%? DecarbonisingheatinginexistingbuildingsintheNZErestsuponadeepretr

905、ofitofthemajority of the existing building stock. Having almost all buildings meetzerocarbonreadybuildingenergycodesby2050wouldrequireretrofitratesof2.5%eachyearby2030,upfromlessthan1%today.Retrofitscanbedisruptiveforoccupants,requirehighupfrontinvestmentandmayfacepermittingdifficulties.Theseissuesm

906、akeachieving the required pace and depth of retrofits in the coming years the biggestchallengefacingthebuildingssector.Anydelayinreaching2.5%ofannualretrofitsby2030wouldrequiresuchasteepsubsequentrampupasto makeretrofittingthevastmajorityofbuildingsby2050virtuallyimpossible.Modellingindicatesthatade

907、layoftenyearsintheaccelerationofretrofitting,wouldincreaseresidentialspaceheatingenergydemandby25%andspaceChapter 3 | Sectoral pathways to net-zero emissions by 2050 149 3coolingdemandbymorethan20%,translatingtoa20%increaseinelectricitydemandin2050relativetotheNZE(Figure3.31).Thiswouldputmorestraino

908、nthepowersector,whichwouldneedtoinstallmorelowcarbongenerationcapacity.PoliciesandfuelswitchingwouldstilldrivedownfossilfueldemandintheDelayedRetrofitCase,butanadditional15EJoffossilfuelswouldbeburnedby2050,emitting1GtofCO2.Figure 3.31 Global residential space heating and cooling energy demand in th

909、e NZE and Delayed Retrofit Case IEA.Allrightsreserved.Delays in the ramp up of retrofit rates and depth would be almost impossible to catch up, placing further strain on the power sector and pushing up fossil fuel demand Governmentsneedtoestablishpoliciesforcoalandoilboilersandfurnacesforspaceandwat

910、erheating,whichintheNZEarenolongeravailableforsalefrom2025.Theyalsoneedtotakeactiontoensurethatnewgasboilersareabletooperatewithlowcarbongases(hydrogenready)indecarbonisedgasnetworks.Thisputsapremiumontheavailabilityofcompellingalternativestothetypesofboilersbeingphasedout,includingtheuseofheatpumps

911、,efficientwoodstoves(usingsustainablesuppliesofwood),districtenergy,solarPV,solarthermalandotherrenewableenergytechnologies.Whichalternativesarebestwilldependtosomeextentonlocalconditions,butelectrificationwillbethemostenergyefficient and costeffective lowcarbon option in most cases, and decarbonisi

912、ng andexpandingdistrictenergynetworksislikelytomakesensewheredensitiesallow.Theuseofbiomethaneorhydrogeninexistingorupgradedgasnetworksmaybethebestoptioninareaswheremoreefficientalternativesarenotpossible.Governmentsalsofacedecisionsonminimumenergyperformancestandards(MEPS).TheNZEseesallcountriesint

913、roduceMEPSforallmainappliancecategoriessetatthemoststringentlevelsprevailinginadvancedeconomiesby2025atthelatest.Amongothers,thiswouldmeanendingthesaleofincandescent,halogenandcompactfluorescentlampsbythat36902520302035204020452050EJNZEDelayedRetrofitCaseFossilfuelsElectricityanddistricth

914、eatIEA. All rights reserved.150 International Energy Agency | Special Report time.SettingMEPSattherightlevelwillrequirecarefulplanning;internationalcollaborationtoalignstandardsandobjectivescouldplayahelpfulroleinkeepingcostsdown.ThesystemicnatureoftheNZEmeansthatstrategiesandpoliciesforbuildingswil

915、lworkbestiftheyarealignedwiththosebeingadoptedforpowersystems,urbanplanningandmobility.ThiswouldhelptoensurethesuccessfulscalingupofbuildingintegratedPVtechnologies,batterystorageandsmartcontrolstomakebuildingsactiveserviceproviderstogrids.Itwould also help to foster the deployment of smart EV charg

916、ing infrastructure. Policiesincentivisingdenseandmixeduseurbanplanningcoupledwitheasyaccesstolocalservicesandpublictransportcouldreducerelianceonpersonalvehicles(seeChapter2).Therearealso links between buildings strategies and measures to reduce the embodied carbonemissionsofnewconstruction,whichfal

917、lsby95%by2050intheNZE.Chapter 4 | Wider implications of achieving net-zero emissions 151 Chapter4Wider implications of achieving net-zero emissions Economy:InourNetZeroEmissionsby2050Scenario(NZE),globalCO2emissionsreachnetzeroby2050andinvestmentrisesacrosselectricity,lowemissionsfuels,infrastructur

918、eandendusesectors.Cleanenergyemploymentincreasesby14millionto2030,butemploymentinoil,gasandcoaldeclinesbyaround5million.Therearevaryingresultsfordifferentregions,withjobgainsnotalwaysoccurringinthesameplace,ormatchingthesameskillset,asjoblosses.Theincreaseinjobsandinvestmentstimulateseconomicoutput,

919、resultinginanetincreaseinglobalGDPto2030.Butoilandgasrevenuesinproducereconomiesare80%lowerin2050thaninrecentyearsandtaxrevenuesfromretailoilandgassalesinimportingcountriesare90%lower. Energyindustry:Thereisamajorcontractioninfossilfuelproduction,butcompaniesthat produce these fuels have skills and

920、resources that could play a key role indevelopingnewlowemissionsfuelsandtechnologies.Theelectricityindustryscalesuptomeetdemandrisingovertwoandahalffoldto2050andbecomesmorecapitalintensive, focusing on renewables, sources of flexibility and grids. Large energyconsumingcompanies,vehiclemanufacturersa

921、ndtheirsuppliersadjustdesignsandretoolfactorieswhileimprovingefficiencyandswitchingtoalternativefuelsupplies. Forcitizenswholackaccesstoelectricityandcleancooking,theNZEdeliversuniversalaccessby2030.ThiscostsaroundUSD40billionayearoverthenextdecadeandaddslessthan0.2%toCO2emissions.Forcitizenstheworl

922、dover,theNZEbringsprofoundchanges,andtheiractivesupportisessentialifitistosucceed.Aroundthreequartersof behavioural changes in the NZE can be directly influenced or mandated bygovernmentpolicies.Thecostofenergyisalsoanimportantissueforcitizens,andtheproportionofdisposablehouseholdincomespentonenergy

923、overtheperiodto2050remains stable in emerging market and developing economies, despite a largeincreaseindemandformodernenergyservices. Government action is central to achieve netzero emissions globally by 2050; itunderpinsthedecisionsmadebyallotheractors.Fourparticularpointsareworthstressing.First,t

924、heNZEdependsonactionsthatgofarbeyondtheremitofenergyministers,andrequiresacoordinatedcrossgovernmentapproach.Second,thefallinoilandgasdemandintheNZEmayreducesometraditionalenergysecurityrisks,buttheydonotdisappear,whilepotentialnewvulnerabilitiesemergefromincreasingrelianceonelectricitysystemsandcri

925、ticalminerals.Third,acceleratedinnovationisneeded. The emissions cuts to 2030 in the NZE can be mostly achieved withtechnologiesonthemarkettoday,butalmosthalfofthereductionsin2050dependontechnologiesthatarecurrentlyunderdevelopment.Fourth,anunprecedentedlevelofinternationalcooperationisneeded.Thishe

926、lpstoaccelerateinnovation,develop international standards and facilitate new infrastructure to link nationalmarkets.WithoutthecooperationassumedintheNZE,thetransitiontonetzeroemissionswouldbedelayedbydecades.S U M M A R YIEA. All rights reserved.152 International Energy Agency | Special Report4.1 In

927、troductionAchievingnetzeroemissionsby2050isamonumentaltask,especiallyagainstabackdropofincreasing economic and population growth. It calls for an unwavering focus from allgovernments,workingtogetherwithindustriesandcitizens,toensurethatthetransitiontoglobalnetzeroemissionsproceedsinacoordinatedwaywi

928、thoutdelay.Inthischapter,welookatwhatthechangesthatdelivernetzeroemissionsgloballyby2050intheNZEwouldmeanfortheeconomy,theenergyindustry,citizensandgovernments.Figure 4.1 Selected global milestones for policies, infrastructure and technology deployment in the NZE IEA.Allrightsreserved.There are mult

929、iple milestones on the way to global net-zero emissions by 2050. If any sector lags, it may prove impossible to make up the difference elsewhere. 5055402020202520302035204020452050GtCOBuildingsTransportIndustryElectricityandheatOther2045150 Mtlowcarbonhydrogen850GWelectrolysers435Mtlowcar

930、bonhydrogen3000GWelectrolysers4GtCO2capturedPhaseoutofunabatedcoalinadvancedeconomies2030Universalenergyaccess60%ofglobalcarsalesareelectric1020GWannualsolarandwindadditionsAllnewbuildingsarezerocarbonreadyMostnewcleantechnologiesinheavyindustrydemonstratedatscaleAllindustrialelectricmotorsalesarebe

931、stinclassNonewICEcarsales2035OverallnetzeroemissionselectricityinadvancedeconomiesMostappliancesandcoolingsystemssoldarebestinclass50%ofheavytrucksalesareelectric7.6GtCO2capturedNonewunabatedcoalplantsapprovedfordevelopment20212025Nonewsalesoffossilfuelboilers2040Morethan90%ofheavyindustrialproducti

932、onislowemissions2050Almost70%ofelectricitygenerationgloballyfromsolarPVandwindMorethan85%ofbuildingsarezerocarbonready50%ofheatingdemandmetbyheatpumpsPhaseoutofallunabatedcoalandoilpowerplantsNetzeroemissionselectricityglobally50%offuelsusedinaviationarelowemissionsAround90%ofexistingcapacityinheavy

933、industriesreachesend ofinvestmentcycle50%ofexistingbuildingsretrofittedtozerocarbonreadylevelsNonewoilandgasfieldsapprovedfordevelopment;nonewcoalminesormineextensionsChapter 4 | Wider implications of achieving net-zero emissions 153 4WiderangingmeasuresandregulationsintheNZEhelptoinfluenceorchanget

934、hepurchasesthatindividualsmake,thewaytheyheatandcooltheirhomes,andtheirmeansoftransport.Manyindustries,especiallythosethatarecurrentlyinvolvedintheproductionofenergyorarelargescaleusersofenergy,alsofacechange.Someoftheshiftsforindividualsandindustriesmaybeunpopular,underscoringthefactthatitisessenti

935、altoensurethattheenergytransitionistransparent,justandcosteffective,andtopersuadecitizensoftheneedforreform.Thesechangesdeliversignificantbenefits.Therearearound790millionpeoplewhodonothaveaccesstoelectricitytodayand2.6billionpeoplewhodonothaveaccesstocleancookingoptions.TheNZEshowshowemissionsreduc

936、tionscangohandinhandwitheffortstoprovideuniversalaccesstoelectricityandcleancooking,andtoimproveairquality.Itprovidessignificantopportunitiestoo,withcleanenergytechnologiesprovidingmanynewbusiness opportunities and jobs, and with innovations that stimulate new industrialcapacities.Underpinningalloft

937、hesechangesaredecisionstakenbygovernments.Thiswillrequirewholeheartedbuyinfromalllevelsofgovernmentandfromallcountries.Themagnitudeofthechangesrequiredtoreachglobalnetzeroemissionsby2050arenotwithinthepowerofgovernmentenergyorenvironmentdepartmentsalonetodeliver,norwithinthepowerofindividualcountrie

938、s.Itwillinvolveanunprecedentedlevelofglobalcollaboration,withrecognition of and sensitivity to differences in the stagesof development of individualcountries, and an appreciation of the difficulties faced by particular communities andmembersofsociety,especiallythosewhomaybenegativelyaffectedbythetra

939、nsitiontonetzeroemissions.IntheNZE,governmentsstartbysettingunequivocallongtermtargets,ensuringthatthesearefullysupportedfromtheoutsetbyexplicit,neartermtargetsandpolicymeasuresthatclearlysetoutthepathway,andthatrecogniseeachcountrysuniquestarting conditions, to support the deployment of new infrast

940、ructure and technologies(Figure4.1).4.2 Economy4.2.1 InvestmentandfinancingThetransitiontonetzeroemissionsby2050requiresasubstantialrampupintheinvestmentofelectricity,infrastructureandtheendusesectors.Thelargestincreaseoverthenextdecadeisinelectricitygeneration:annualinvestmentincreasesfromaboutUSD0

941、.5trillionoverthepastfiveyearstoUSD1.6trillionin2030(Figure4.2).By2030,annualinvestmentinrenewablesintheelectricitysectorisaroundUSD1.3trillion,slightlymorethanthehighestleveleverspentonfossilfuelsupply(USD1.2trillionin2014).AnnualinvestmentincleanenergyinfrastructureincreasesfromaroundUSD290billion

942、overthepastfiveyearstoaboutUSD880billionin2030.Thisisforelectricitynetworks,publicelectricvehicle(EV)chargingstations,hydrogenrefuellingstationsandimportandexportterminals,directaircapture and CO2 pipelines and storage facilities. Annual investment in lowcarbontechnologiesinendusesectorsrisesfromUSD

943、530billioninrecentyearstoUSD1.7trillionIEA. All rights reserved.154 International Energy Agency | Special Report in2030.1Thisincludesspendingondeepretrofittingofbuildings,transformationofindustrialprocesses,andthepurchaseofnewlowemissionsvehiclesandmoreefficientappliances.After2030,annualelectricity

944、generationinvestmentfallsbyonethirdto2050.AlotofinfrastructureforalowemissionselectricitysectorisestablishedwithinthefirstdecadeoftheNZE,andthecostofrenewablescontinuestodeclineafter2030.Inendusesectors,therearecontinuedincreasesininvestmentinEVs,carboncapture,utilisationandstorage(CCUS)andhydrogenu

945、seinindustryandtransport,andmoreefficientbuildingsandappliances.GlobalinvestmentinfossilfuelsupplyfallssteadilyfromaboutUSD575billiononaverageoverthepastfiveyearstoUSD110billionin2050intheNZE,withupstreamfossilfuelinvestmentrestrictedtomaintainingproductionatexistingoilandnaturalgasfields.Thisinvest

946、mentreflectsthefactthatfossilfuelsarestillusedin2050intheNZEinprocesseswhere they are paired with CCUS, in nonemitting processes (such as petrochemicalmanufacturing), and in sectors where emissions reductions are most challenging (withemissionsoffsetbycarbondioxideremoval).Investmentinlowemissionsfu

947、elsincreasesmorethanthirtyfoldbetween2020and2050,reachingaboutUSD135billionin2050.Thisissplitroughlyequallybetweentheproductionofhydrogenandhydrogenbasedfuels,andtheproductionofbiofuels.Overthe202150periodintheNZE,annualaveragetotalenergysectorinvestmentasashareofgrossdomesticproduct(GDP)isaround1%h

948、igherthanoverthepastfiveyears.Theprivate sector is central to finance higher investment needs. It requires enhancedcollaborationbetweendevelopers,investors,publicfinancialinstitutionsandgovernments.Collaborationwillbeespeciallyimportantoverthenextfivetotenyearsforthedevelopmentoflargeinfrastructurep

949、rojectsandfortechnologiesinthedemonstrationorprototypephasetodaysuchassomehydrogenandCCUSapplications.Companiesandinvestorshavedeclaredstrong interest to invest in clean energy technologies, but turning interest into actualinvestmentatthelevelsrequiredintheNZEalsodependsonpublicpolicies.Someobstacle

950、stoinvestmentneedtobetackled.Manyemergingmarketanddevelopingeconomies are reliant on public sources to finance energy projects and new industrialfacilities.Insomecases,improvementsinregulatoryandpolicyframeworkswouldfacilitatetheinternationalflowoflongtermcapitaltosupportthedevelopmentofbothnewandex

951、istingcleanenergytechnologies.TherapidgrowthininvestmentintransportandbuildingsintheNZEpresentsadifferentkindofchallengeforpolicymakers.Inmanycases,anincreaseincapitalspendingforanefficientapplianceorlowemissionsvehiclewouldbemorethanoffsetbylowerexpenditureonfuelsandelectricityovertheproductlifetim

952、e,butsomelowincomehouseholdsandsmallandmediumenterprisesmaynotbeabletoaffordtheupfrontcapitalrequired.1InvestmentlevelspresentedinthisreportincludeabroaderaccountingofefficiencyimprovementsinbuildingsanddifferfromthatreportedintheIEAWorldEnergyInvestmentreport(IEA,2020a).Enduseefficiencyinvestmentsa

953、retheincrementalcostofimprovingtheenergyperformanceofequipmentrelativetoaconventionaldesign.Chapter 4 | Wider implications of achieving net-zero emissions 155 4Figure 4.2 Global average annual energy investment needs by sector and technology in the NZE IEA.Allrightsreserved.Investment increases rapi

954、dly in electricity generation, infrastructure and end-use sectors. Fossil fuel investment drops sharply, partly offset by a rise in low-emissions fuels. Notes:CCUS=carboncapture,utilisationandstorage;EV=electricvehicle.Infrastructureincludeselectricitynetworks,publicEVcharging,CO2pipelinesandstorage

955、facilities,directaircaptureandstoragefacilities,hydrogenrefuellingstations,andimportandexportterminalsforhydrogen.4.2.2 EconomicactivityThe energy transition required for netzero emissions by 2050 will affect all economicactivitiesdirectlyorindirectly.IncoordinationwiththeInternationalMonetaryFund,w

956、ehavemodelledthemediumtermglobalmacroeconomicimpactofthechangesintheenergy0.51.01.52.02003030303140204150OilNaturalgasCoalLowemissionsfuelsFossilfuelswithoutCCUSFossilfuelswithCCUSNuclearRenewablesBatterystorageElectricityg

957、ridsEVchargersHydrogeninfrastructureDirectaircaptureCOtransportandstorageRenewablesHydrogenEfficiencyElectrificationCCUSElectricityTrillionUSD(2019)FuelsEnduseInfrastructureIEA. All rights reserved.156 International Energy Agency | Special Report sectorthatoccurintheNZE.Thisanalysisshowsthatthesurge

958、inprivateandgovernmentspending on clean energy technologies in the NZE createsa large number of jobs andstimulateseconomicoutputintheengineering,manufacturingandconstructionindustries.ThisresultsinannualGDPgrowththatisnearly0.5%higherthanthelevelsintheStatedPoliciesScenario(STEPS)2duringlatterhalfof

959、the2020s(Figure4.3).3Figure 4.3 Change in annual growth rate of global GDP in the NZE relative to the STEPS IEA.Allrightsreserved.The surge in government and private investment in the NZE has a positive impact on global GDP, but there are large differences between regions Notes:GDP=grossdomesticprod

960、uct.Reductioninrentsstemmainlyfromlowerfossilfuelincome.Source:IEAanalysisbasedonIMF.Therearelargedifferencesinmacroeconomicimpactsbetweenregions.ThedeclineinfossilfueluseandpricesresultsinafallinGDPintheproducereconomies,4whererevenuesfromoilandgassalesoftencoveralargeshareofpublicspendingoneducati

961、on,healthcareandotherpublicservices.Thedropinoilandgasdemand,andtheconsequentfallininternationalpricesforoilandgas,causenetincomeinproducereconomiestodroptohistoriclows(Figure4.4).Somecountrieswiththelowestcostoilresources(includingmembersofthe2TheIEAStatedPoliciesScenarioistheprojectionfortheglobal

962、energysystembasedonthepoliciesandmeasuresthatgovernmentsaroundtheworld havealreadyputinplaceandonannouncedpoliciesasexpressedinofficialtargetsandplans,suchasNationallyDeterminedContributionsputforwardundertheParisAgreement(seeChapter1).3Theestimatedgeneralequilibriummacroeconomicimpactoftheincreasei

963、npublicandprivateinvestmentand the reduction in oilrelated revenue contained in the NZE has been provided by the InternationalMonetaryFundusingitsGlobalIntegratedMonetaryandFiscalModel(GIMF).4Producereconomiesarelargeoilandgasexportersthatrelyonhydrocarbonrevenuestofinanceasignificantproportionofthe

964、irnationalbudgets,includingcountriesintheMiddleEast,RussiaandtheCaspianregion.0.1%0.0%0.1%0.2%0.3%0.4%0.5%202125202630PrivateinvestmentGovernmentinvestmentReductioninrentNetchangeChapter 4 | Wider implications of achieving net-zero emissions 157 4Organization of the Petroleum Exporting Countries OPE

965、C) gain market share in thesecircumstances,buteventheywouldseelargefallsinrevenues.Structuralreformswouldbeneededtoaddressthesocietalchallenges,includingthosetoacceleratetheprocessofreforming inefficient fossil fuel subsidies and to speed up moves to use hydrocarbonresourcestoproducelowemissionsfuel

966、s,e.g.hydrogenandhydrogenbasedfuels(seesection4.3.1).Figure 4.4 Income from oil and gas sales in producer economies in the NZE IEA.Allrightsreserved.Structural reforms and new sources of revenue are needed in producer economies, but these are unlikely to compensate fully for a large drop in oil and

967、gas income ThemacroeconomiceffectsoftheNZEareveryuncertain.Theydependonahostoffactorsincluding:howgovernmentexpenditureisfinanced;benefitsfromimprovementstohealth;changesinconsumerbills;broadimpactofchangesinconsumerbehaviour;andpotentialforproductivityspilloversfromacceleratedenergyinnovation.Nonet

968、heless,impactsarelikelytobelowerthanassessmentsofthecostofclimatechangedamages(OECD,2015).Itisalsolikelythatacoordinated,orderlytransitioncanbeexecutedwithoutmajorglobalsystemicfinancialimpacts,butthiswillrequirecloseattentionfromgovernments,financialregulatorsandthecorporatesector.4.2.3 EmploymentE

969、mploymentintheenergysectorshiftsmarkedlyintheNZEinresponsetochangesininvestmentandspendingonenergy.Weestimatethattodayroughly40millionpeoplearoundtheworldworkdirectlyintheoil,gas,coal,renewables,bioenergyandenergynetworkindustries(IEA,2020b).IntheNZE,cleanenergyemploymentincreasesby14million0.40.81.

970、21.62.020040060080098024150ThousandUSDpercapitaBillionUSD(2019)OilNaturalgasPercapitaincome(rightaxis)IEA. All rights reserved.158 International Energy Agency | Special Report to2030,whileemploymentinoil,gasandcoalfuelsupplyandpowerplantsdeclinesbyaround5m

971、illion,leadingtoanetincreaseofnearly9millionjobs(Figure4.5).Figure 4.5 Global energy sector employment in the NZE, 2019-2030 IEA.Allrightsreserved.Overall employment in the energy sector increases by almost 9 million to 2030 as jobs created in clean energy sectors outpace losses in fossil fuels Jobs

972、createdwouldnotnecessarilybeinthesameareawherejobsarelost,plustheskillsetsrequiredforthecleanenergyjobsmaynotbedirectlytransferable.Joblosseswouldbemostpronounced in communities that are heavily dependent on fossil energy production ortransformationactivities.Evenwherethenumberofdirectenergyjobslost

973、issmall,theimpactonthelocaleconomymaybesignificant.Governmentsupportwouldalmostcertainlybeneededtomanagethesetransitionsinajust,peoplecentredway.Inpreparation,abetterunderstandingofcurrentenergyindustryemploymentisneeded.Ausefulactionwouldbefor governments to adopt more detailed surveying approaches

974、 for energy industryemployment,suchasthoseusedintheUSEnergy&EmploymentReport(NASEOandEnergyFuturesInitiative,2021).Inadditiontothe14millionnewcleanenergyjobscreatedintheNZE,othernewjobsarecreatedbychangesinspendingonmoreefficientappliances,electricandfuelcellvehicles,andbuildingretrofitsandenergyeff

975、icientconstruction.Thesechangeswouldrequireafurther16millionworkers,meaningthattherewouldbe30millionmorepeopleworkingincleanenergy,efficiencyandlowemissionstechnologiesby2030intheNZE(Figure4.6).5Investment in electricity generation, electricity networks, EV manufacturing and energyefficiency are amo

976、ng the areas that will open up new employment opportunities. Forexample,jobsinsolarandwindmorethanquadrupleintheNZEovercurrentlevels.Nearlytwothirdsofworkersinthesesectorsby2030intheNZEwouldbehighlyskilledandthe5Thisincludesnewjobsandjobsfilledbymovingcurrentemploymentfromonetypeofproductiontoanothe

977、r.020192030MillionjobsBioenergyElectricityCoalOilandgasLossesGrowthChapter 4 | Wider implications of achieving net-zero emissions 159 4majorityrequiresubstantialtraining.Inaddition,withthemorethandoublingoftotalenergyinvestment,newemploymentopportunitieswillariseinassociatedareassuchaswho

978、lesaletrading,financialandlegalservices.Inmanycasesitmaybepossibletoshiftworkerstonewproductlineswithinthesamecompany,forexampleinvehiclemanufacturingasproductionreconfigurestoEVs.However,therewouldbelargerrisksforspecialisedsupplychaincompaniesthatprovideproductsandservices,e.g.internalcombustionen

979、ginesthatarereplacedbynewcomponentssuchasbatteries.Figure 4.6 New workers in clean energy and related sectors and shares by skill level and occupation in the NZE and the STEPS in 2030 IEA.Allrightsreserved.About 30 million new workers are needed by 2030 to meet increased demand for clean energy, eff

980、iciency, and low-emissions technologies; over half are highly skilled positions Note:EVs=electricvehicles.ThenewjobscreatedintheNZEtendtohavemoregeographicflexibilityandawiderdistributionthanisthecasetoday.Around40%arejobslocatedclosetowheretheworkisbeingdone,e.g.buildingefficiencyimprovementsorwind

981、turbineinstallation,andtheremainingarejobstiedtomanufacturingsites.Todaythemanufacturingcapacityforanumberofcleanenergytechnologies,suchasbatteriesandsolarphotovoltaicpanels,isconcentratedinparticularareas,notablyChina.TherapidincreaseindemandforcleanenergytechnologiesintheNZErequiresnewproductionca

982、pacitytocomeonlinethatcouldbelocatedinanyregion.Thosecountriesandcompaniesthatmovefirstmayenjoystrategicadvantagesincapturingburgeoningdemand.102030STEPSNZEGridsPowergenerationEVsBioenergyproductionEfficiencyEnduserenewablesInnovativetechnologiesAdditional workers incleanenergy andrelatedsectors(mil

983、lions)SkilllevelOccupation20%40%60%80%100%Professional38%Construction23%High65%Medium27%Low8%Positions byoccupationandskilllevelintheNZEManufacturing28%Other12%IEA. All rights reserved.160 International Energy Agency | Special Report 4.3 Energyindustry4.3.1 OilandgasTheenergytransitionenvisionedinth

984、eNZEinvolvesamajorcontractionofoilandgasproductionwithfarreachingimplicationsforallthecompaniesthatproducethesefuels.Oildemandfallsfromaround90millionbarrelsperday(mb/d)in2020to24mb/din2050,whilenaturalgasdemandfallsfrom3900billioncubicmetres(bcm)toaround1700bcm.Nofossilfuelexplorationisrequiredinth

985、eNZEasnonewoilandnaturalgasfieldsarerequiredbeyondthosethathavealreadybeenapprovedfordevelopment.Thisrepresentsaclearthreattocompanyearnings,buttherearealsoopportunities.Theresourcesandskillsoftheoilandgasindustryareagoodmatchwithsomeofthenewtechnologiesneededtotackleemissionsinsectorswherereduction

986、sarelikelytobemostchallenging,andtoproducesomeofthelowemissionsliquidsandgasesforwhichthereisarapidincreaseindemandintheNZE(seeChapter2).Bypartneringwithgovernmentsandotherstakeholders,theoilandgasindustrycouldplayaleadingroleindevelopingthesefuelsandtechnologiesatscale,andinestablishingnewbusinessm

987、odels.Theoilandgasindustryishighlydiverse,andvariouscompaniescouldpursueverydifferentstrategiesinthetransitiontonetzeroemissions.Minimisingemissionsfromcoreoilandgasoperations however should be a firstorder priority for all oil and gas companies. Thisincludestacklingmethaneemissionsthatoccurduringop

988、erations(theyfallby75%between2020and2030intheNZE)andeliminatingflaring.Companiesshouldalsoelectrifyoperationsusingrenewableelectricitywhereverpossible,eitherbypurchasingelectricityfromthegridorbyintegratingoffgridrenewableenergysourcesintoupstreamfacilitiesortransportinfrastructure. Producers that c

989、an demonstrate strong and effective action to reduceemissionscancrediblyarguethattheiroilandgasresourcesshouldbepreferredoverhigheremissionsoptions.Someoilandgascompaniesmaychoosetobecome“energycompanies”focusedonlowemissionstechnologiesandfuels,includingrenewableelectricity,electricitydistribution,

990、EVchargingandbatteries.Severaltechnologiesthatarecriticaltotheachievementofnetzeroemissions,suchasCCUS,hydrogen,bioenergyandoffshorewind,lookespeciallywellsuitedtosomeoftheexistingskills,competenciesandresourcesofoilandgascompanies. Carboncapture,utilisationandstorage.Theoilandgasindustryisalreadyth

991、egloballeaderindevelopinganddeployingCCUS.Ofthe40milliontonnes(Mt)ofCO2capturedtoday at largescale facilities, around threequarters is captured from oil and gasoperations,whichoftenproduceconcentratedstreamsofCO2thatarerelativelyeasyandcosteffectivetocapture(IEA,2020c).Theoilandgasindustryalsohasthe

992、largescaleengineering,pipeline,subsurfaceandprojectmanagementskillsandcapabilitiestohandlelargevolumesofCO2andtohelpscaleupthedeploymentofCCUS.Chapter 4 | Wider implications of achieving net-zero emissions 161 4 Lowemissions hydrogen and hydrogenbased fuels. Oil and gas companies couldcontribute to

993、developing and deploying lowemissions hydrogen in several ways(IEA,2019a).Nearly40%ofhydrogenproductionin2050intheNZEisfromnaturalgasinfacilitiesequippedwithCCUS,providinganimportantopportunityforcompaniesandcountriestoutilisetheirnaturalgasresourcesinawaythatisconsistentwithnetzeroemissions.Oftheto

994、taloutputof530Mtofhydrogenin2050,about30%isprocessedinto ammonia and synthetic fuels (equivalent to around 7.5mboe/d). Thetransformationprocessesinvolvedhavemanypotentialsynergieswiththeskillsandequipmentusedinoilandgasprocessingandrefining.Oilandgascompaniesalsohavelongexperienceoftransportingliqui

995、dsandgasesbypipelineandships. Advanced biofuels and biomethane. The production of advanced biofuels growssubstantially in the NZE, but this depends critically on continued technologicalinnovation.ManyoilandgascompanieshaveactiveR&Dprogrammesintheseareasandcouldbecomeleadingproducers.Biomethanealowem

996、issionsalternativetonaturalgascanbeproducedinlargecentralisedfacilities,whichcouldbeagoodfitwiththeknowledgeandtechnicalexpertiseofexistinggasproducers(IEA,2020d). Offshorewind.About40%ofthelifetimecostsofastandardoffshorewindprojectinvolvesignificantsynergieswiththeoffshoreoilandgassector(IEA,2019b

997、).Theoilandgasindustryhasconsiderableexperienceofworkinginoffshorelocations,whichcouldbeofvalueintheconstructionoffoundationsandsubseastructuresforoffshorewindfarms,especiallywhenusingvesselsduringinstallationandoperation.Theexperienceofmaintainingsafetystandardsinoilandgascompaniescouldalsobehelpfu

998、lduringmaintenanceandinspectionofoffshorewindfarmsoncetheyareinoperation.Oil and gas companies are wellplaced to accelerate the pace of development anddeploymentofthesetechnologies,andtogainacommercialedgeoverothercompanies.IntheNZE,investmentinlowemissionstechnologiessuitedtotheskillsandexpertiseof

999、oilandgascompaniesexceedsthatintraditionaloilandgasoperationsby2030.Totalcapitalspending on these technologies and on traditional oil and gas operations averagesUSD650billionperyearover202150,justlessthanannualinvestmentinoilandgasprojectsbetween2016and2020(Figure4.7).Notalloilandgascompanieswillcho

1000、osetofollowastrategyofdiversifyingintoothertypesofenergy.Forexample,itisfarfromcertainthatnationaloilcompanieswillbechargedbytheirstateownerstodiversifyanddeveloplowemissionsenergysourcesoutsidetheircoreareaofactivity;othercompaniesmaydecidesimplytoconcentrateonsupplyingoilandnaturalgasascleanlyande

1001、fficientlyaspossible,andtoreturnincometoshareholders.Whatisclear,however,isthatnooilandgascompanywouldbeunaffectedbytheNZEandthatallpartsoftheindustryneedtodecidehowtorespond(IEA,2020e).IEA. All rights reserved.162 International Energy Agency | Special Report Figure 4.7 Annual average investment in

1002、oil and gas and low-emissions technologies with synergies for the oil and gas industry in the NZE IEA.Allrightsreserved.Investment in low-emissions technologies suited to the skills and expertise of oil and gas companies exceeds investment in traditional operations by 2030 Note:CCUS=carboncapture,ut

1003、ilisationandstorage.4.3.2 CoalTheprecipitousdeclineincoaluseprojectedintheNZEwouldhavemajorimplicationsforthefutureofminingcompaniesandcountrieswithlargeexistingproductioncapacities.Around470milliontonnesofcoalequivalent(Mtce)ofcoalusedintheNZEin2050isinfacilitiesequippedwithCCUS(80%ofglobalcoaldema

1004、ndin2050),whichpreventsanevensharperdeclineindemand.ButnonewcoalminesormineextensionsareneededintheNZE.Retrainingandregionalrevitalisationprogrammeswouldbeessentialtoreducethesocialimpactofjoblossesatthelocallevelandtoenableworkersandcommunitiestofindalternative livelihoods. There could also be oppo

1005、rtunities to locate new clean energyfacilities,includingthenewprocessingfacilitiesthatareneededforcriticalminerals,intheareasmostaffectedbymineclosures.Forminingcompanies,however,thecontractionincoaldemandintheNZEcouldbeoffsetbytheneedtoincreaseminingofotherrawminerals,includingthosevitaltomanyclean

1006、energytechnologies,suchascopper,lithiumandnickel(IEA,2021a).GlobaldemandforthesecriticalmineralsrisesrapidlyintheNZE(Figure4.8).Forexample,demandforlithiumforuseinbatteriesexpandsbyafactorof30by2030,whiledemandforrareearths,primarilyusedformakingEVmotorsandwindturbines,increasesbyafactoroftenby2030.

1007、Criticalmineralresourcesarenotalwayslocatedinthesamelocationsorcountriesasexistingcoalmines,buttheskillsandexperienceofminingcompanieswillbeessentialtoensurethatthesupplyofthesemineralsisabletomatchdemandatreasonableprices.Bythe2040s,thesizeoftheglobalmarketforthesemineralsapproachesthatforcoaltoday

1008、.200400600800200303140204150BillionUSD(2019)OilNaturalgasCCUSHydrogenBioenergyOffshorewindOilandnaturalgasLowemissionstechnologiesChapter 4 | Wider implications of achieving net-zero emissions 163 4Figure 4.8 Global value of coal and selected critical minerals in the

1009、 NZE IEA.Allrightsreserved.The market for critical minerals approaches that of coal today in the 2040s Notes:Includestotalrevenueforcoalandforselectedcriticalmineralsusedincleanenergytechnologies.Thepricesofcriticalmineralsarebasedonconservativeassumptionsaboutcostincreases(arounda10%20%increasefrom

1010、currentlevelsto2050).4.3.3 ElectricityGettingtonetzeroemissionscallsforamassiveexpansionoftheelectricitysectortopowertheneedsofagrowingglobaleconomy,theelectrificationofendusesthatpreviouslyusedfossilfuels,andtheproductionofhydrogenfromelectrolysis.Whileelectricitydemandincreasesmorethantwoandahalft

1011、imes,therapidtransformationoftheindustrymeansthattotalelectricitysupplycoststriplefrom2020to2050intheNZE,raisingaveragecostsperunitofelectricitygenerationmodestly(Figure4.9).Theelectricitysupplyindustryalsobecomesmuchmorecapitalintensive,acceleratingarecenttrend.Theshareofcapitalintotalcostsrisesfro

1012、mlessthan60%in2020(alreadytenpercentagepointshigherthanin2010)toabout80%in2050.Thisislargelyduetoamassiveincreaseinrenewableenergyandthecorrespondingneedformorenetworkcapacityandsourcesofflexibility,includingbatterystorage.Inthelate2020sand2030s,theupgradingandreplacementofexisting solarandwindcapac

1013、ityastheycometotheendoftheiroperatinglivesalsoboostscapitalneeds.6NewnuclearpowercapacityadditionsaddfurthercapitalspendingintheNZE.Therisingcapitalintensityoftheelectricityindustryincreasestheimportanceoflimitingriskfornewinvestmentandensuringsufficientrevenuesinallyearsforgridoperatorstofundrising

1014、investmentneedsapointunderlinedbythefinancialdifficultiesexperiencedbysomenetworkcompaniesin2020duetodepressedelectricitydemandresultingfromtheCovid19crisis(IEA,2020f).6Theytypicallyneedreplacingafter2530yearsofoperation,whereasmanyconventionalhydropower,nuclearandcoalplantsoperatefarlongeralbeitwit

1015、hperiodicadditionalinvestment.0500BillionUSD(2019)CoalRareearthSiliconManganeseCobaltGraphiteNickelLithiumCopperCriticalminerals2020203020402050IEA. All rights reserved.164 International Energy Agency | Special Report Figure 4.9 Global electricity supply costs by component in the NZE IEA.

1016、Allrightsreserved.Electricity system costs triple to 2050, raising average supply costs modestly; the massive growth of renewables makes the industry more capital intensive Notes:Electricitysupplycostsincludeallthedirectcoststoproduceandtransmitelectricitytoconsumers.Batterystoragesystemsareincluded

1017、inpowerplantcapitalrecovery.Therisingshareofrenewablesintheelectricitygenerationmixhasimportantimplicationsfor the design of electricity markets. When the shares of solar, wind, other variablerenewablesandnuclearpowerreachhighlevels,availableelectricitysupplyatnomarginalcostisoftenaboveelectricityde

1018、mand,resultinginawholesalepriceofelectricitythatiszeroorevennegative.By2050,withoutchangesinelectricitymarketdesign,about7%ofwindandsolaroutputintheNZEwouldbeaboveandbeyondwhatcanbeintegrated(andsocurtailed),andtheshareofzeropricehoursintheyearwouldincreasetoaround30%inmajormarketsfromclosetozerotod

1019、ay,despitetheactiveuseofdemandresponse.IftheshareofrenewablesintheelectricitygenerationmixistoriseasenvisionedintheNZE,itwouldthereforebehighlydesirabletoeffectsignificantchangesinthedesignofelectricitymarketssoastoprovidesignalsforinvestment,includinginvestmentinsourcesofflexibilitysuchasbatterysto

1020、rageanddispatchablepowerplants.Theincreaseinelectricityuseinevitablyraisesassociatedcosts.OperatingandmaintainingpowerplantsworldwidecostsclosetoUSD1trillionin2050intheNZE,twoandahalftimesthelevelin2020.In2020,upkeepatfossilfuelpowerplantsaccountedforUSD150billion,andrenewablesrequirednearlyasmuch,m

1021、ostlyforhydropower.By2050,thecostofoperatingandmaintainingrenewablesreachesUSD780billion,mostitneededforwindandsolarphotovoltaics(PV)asaresultoftheirmassivescalingup:offshorewindaloneaccountsforUSD90billion.204060806200402050USDperMWh(2019)GridsPowerplantcapitalrecoveryPowerpla

1022、ntoperationsandmaintenanceFuelCOpriceAveragecost(rightaxis)TrillionUSD(2019)20%40%60%80%100%2010 2020 2030 2040 2050Chapter 4 | Wider implications of achieving net-zero emissions 165 4ThesharpreductionoffossilfueluseintheelectricityindustryandlowerfuelpricesmeanthatcostsrelatedtofuelandCO2pricesares

1023、ignificantlyreduced.Thiscontinuesarecenttrenddrivenbynearrecordlownaturalgaspricesinmanymarkets.EvenwithrisingCO2pricesovertime,therapiddecarbonisationofelectricitymeansthatfuelandCO2makeupadecliningshareoftotalcosts,fallingfromaboutonequarterin2020to5%in2050.Thebalance of fuel costs shifts towards

1024、lowemissions sources, mainly nuclear power andbioenergy(includingwithCCUS),thoughsomestillremainsrelatedtonaturalgasandcoalusedinpowerplantsequippedwithCCUS.Onechallengeinthiscontextiswhattodoaboutthecoalfiredpowerplantsinoperation.In2020,over2100gigawatts(GW)ofpowerplantsworldwideusedcoaltoproducee

1025、lectricityandheat,andtheyemittednearly30%ofallenergyrelatedCO2emissions.Optionsincluderetrofitting coalfired power plants with CCUS technologies, cofiring with biomass orammonia;repurposingcoalplantstofocusonprovidingflexibility;and,wherefeasible,phasing them out. In the NZE, all unabated coalfired

1026、power plants are phased out inadvancedeconomiesby2030andinemergingmarketanddevelopingeconomiesby2040.Asaresult,emissionsfromcoalfiredpowerplantsfallfrom9.8gigatonnes(Gt)in2020to3.0Gtin2030andtojust0.1Gtby2040(residualemissionsfromcoalwithCCUSplants).7Anotherchallengeisrelatedtothescaleofcapacityreti

1027、rementsenvisagedandassociatedsiterehabilitation,startingwithcoal.Thepaceofretirementofcoalfiredpowerplantsover202050isnearlytriplethatofthepastdecade.Decommissioningateachsitecanoftenlastadecadeandentailsignificantcost,andmayinvolveclosingamineaswell.Insomecases,itmaybefinanciallyattractivetobuildar

1028、enewableenergyprojectonthesamesite,takingadvantageofthegridconnectionandlimitingthecostofrehabilitation.Thousandsofnaturalgasfiredandoilfiredpowerplantsarealsoretiredby2050,thoughthesesitesareoftenstrategicallylocatedonthegridandmanyarelikelytobereplaceddirectlywithbatterystoragesystems.The large fl

1029、eet of ageing nuclear reactors in advanced economies means theirdecommissioningincreases,despitemanyreactorlifetimeextensions.IntheNZE,annualaveragenuclearretirementsgloballyare60%higheroverthenext30yearsthaninthelastdecade.Eachnucleardecommissioningprojectcanspandecades,withcostsrangingfromseveralh

1030、undredmilliondollarstowelloverUSD1billionforlargereactors(NEA,2016).4.3.4 EnergyconsumingindustriesThechangesintheNZEwouldhaveanenormousimpactonindustriesthatmanufacturevehiclesandtheirmaterialandcomponentsuppliers.Around95%ofallthecarsandnearlyall of the trucks sold worldwide in 2020 were conventio

1031、nal vehicles with an internalcombustionengine.IntheNZE,about60%ofglobalcarsalesin2030areEVs,and85%of7ACO2capturerateof90%isassumed,thoughhigherratesaretechnicallypossiblewithreducedefficienciesandadditionalcosts(IEA,2020g).IEA. All rights reserved.166 International Energy Agency | Special Report hea

1032、vydutytruckssoldin2040areEVsorfuelcellvehicles.IntheNZE,vehiclecomponentsuppliersandvehiclemanufacturersalikeretoolfactories,changedesignstoincorporatebatteries and fuel cells, and adjust supply chains to minimise the lifecycle emissionsintensities of vehicles. This provides opportunities to redesig

1033、n existing parts andmanufacturingprocessestoimproveefficiencyandlowercosts.TherapidincreaseinEVsalesintheNZErequiresanimmediatescaleupofnewsupplychainsforbatteriesaswellasrechargingandlowemissionsrefuellinginfrastructure.IntheNZE,battery production capacity increases to more than 6.5terawatthours (T

1034、Wh) by 2030,comparedwithlessthan0.2TWhin2020.AnydelayinexpandingbatterymanufacturingcapacitywouldhaveadetrimentalimpactontherolloutofEVsandslowcostreductionsforothercleanenergytechnologiesthatbenefitintheNZEfromhavingsimilarmanufacturingprocessesandknowhow(suchasfuelcellvehiclesandelectrolysers).Ina

1035、viationandshipping,liquidlowemissionsfuelsarecentraltocutemissions.Switchingtosomeofthesewouldhavelittleimpactonvesseldesign:theuseofhydrogenbasedfuelsorbiofuelsinshippingwouldonlyrequirechangestothemotorandfuelsystem,andbiokerosene or synthetic kerosene can operate with existing aircraft. New bunke

1036、ring andrefuellinginfrastructureareneededintheNZE,however,andtheuseoftheselowemissionsfuels also requires new safety and standardisation standards, protocols for permitting,construction and design, as well as international regulation, monitoring, reporting andverificationoftheirproductionanduse.Inhe

1037、avyindustrialsectorssteel,cementandchemicalsmostdeepemissionsreductiontechnologiesarenotavailableonthemarkettoday.IntheNZE,materialproducerssoondemonstratenearzeroemissionprocesses,aidedbygovernmentrisksharingmechanisms,andstarttoadapttheirexistingproductionassets.Formultinationalcompanies,thisinclu

1038、desdevelopingtechnologytransferstrategiestorolloutprocessesacrossplants.Internationalcooperationwouldhelptoensurealevelplayingfieldforall.Withincountries,effortsfocusonindustrialhubsinordertoaccelerateemissionsreductionsacrossmultipleindustrialsectorsbypromotingeconomiesofscalefornewinfrastructure(s

1039、uchasCO2transportandstorage)andsuppliesoflowemissionsenergy.Materials producers work with governments in the NZE to create an internationalcertification system for nearzero emission materials to differentiate them fromconventionalones.Thiswouldenablebuyersofmaterialssuchasvehiclemanufacturersandcons

1040、truction companies to enter into commercial agreements to purchase nearzeroemissionsmaterialsatapricepremium.Inmostcases,thepremiumwouldresultinonlyamodestimpactonthefinalpriceoftheproductpricegiventhatmaterialsgenerallyaccountforasmallportionofmanufacturingcosts(MaterialEconomics,2019).Chapter 4 |

1041、Wider implications of achieving net-zero emissions 167 44.4 Citizens4.4.1 EnergyrelatedSustainableDevelopmentGoalsAninclusiveandpeoplecentredtransitioniskeytotheworldmovingrapidly,collectivelyandconsistentlytowardnetzeroemissionsbymidcentury.TheNZEachievestheUnitedNationsenergyrelatedSustainableDeve

1042、lopmentGoals(SDGs)ofuniversalaccesstocleanmodernenergyby2030(SDG7.1)andreducingprematuredeathscausedbyairpollution(SDG3.9). The technologies, options and measures used to achieve full access to lowemissionselectricityandcleancookingsolutionsby2030intheNZEalsohelptoreducegreenhousegas(GHG)emissionsfr

1043、omhouseholdenergyuse.EnergyaccessAbout790millionpeopleworldwidedidnothaveaccesstoelectricityin2020,mostofthemlivinginsubSaharanAfricaanddevelopingAsia.Around2.6billionpeopledidnothaveaccesstocleancookingoptions:35%ofthemwereinsubSaharanAfrica,25%inIndiaand15%inChina.Alackofaccesstoenergynotonlyimped

1044、eseconomicdevelopment,butalsocausesseriousharmtohealthandisabarriertoprogressongenderequalityandeducation.8Figure 4.10 People gaining access to electricity by type of connection in emerging market and developing economies in the NZE IEA.Allrightsreserved.More than 80% of people gaining access to ele

1045、ctricity by 2030 are supplied renewable power and just over half via off-grid systems 8Householdsrelyingonthetraditionaluseofbiomassforcookingdedicatearound1.4hourseachdaycollectingfirewoodandseveralhourscookingwithinefficientstoves,aburdenlargelybornebywomen(IEA,2017).20040060080052030Mi

1046、llionpeopleStandalonerenewablesStandaloneMinigridsrenewablesMinigridsGridrenewablesGridWithoutaccessIEA. All rights reserved.168 International Energy Agency | Special Report Around45%ofthosewholackaccesstoelectricityby2030gainitviaaconnectiontoamaingrid, while the rest are served by minigrids (30%)

1047、and standalone solutions (25%)(Figure4.10).Almostalloffgridorminigridsolutionsare100%renewable.Decentralisedsystemsthatrelyondieselgenerators,whicharealsodeployedinsomegridconnectedsystemstocompensateforlowreliability,arephasedoutlaterandreplacedwithsolarstorage systems. Achieving full access does n

1048、ot lead to a significant increase in globalemissions:in2030itaddslessthan0.2%toCO2emissions.Achievingfullaccesstoelectricityalsobringsefficiencygainsandacceleratestheelectrificationofappliances,whichbecomecriticaltoemissionsreductionsinbuildingsafter2030inemergingmarketanddevelopingeconomies.Forclea

1049、ncooking,55%ofthosegainingaccessby2030intheNZEdosothroughimprovedbiomasscookstoves(ICS)fuelledbymodernbiomass,biogasorethanol,25%throughtheuseofliquefiedpetroleumgas(LPG)and20%viaelectriccookingsolutions(Figure4.11).LPGisthemainfueladoptedinurbanareasandICSisthemainoptioninruralareas.TheuseofLPGresu

1050、ltsinaslightincreaseinCO2emissionsin2030butanetreductioninoverallGHGemissionsduetoreducedmethane,nitrousoxidesandblackcarbonemissionsfromthetraditionaluseofbiomass.Inaddition,LPGisincreasinglydecarbonisedafter2030usingbiosourcedbutaneandpropane(bioLPG)producedsustainablyfrommunicipalsolidwaste(MSW)a

1051、ndotherrenewablefeedstocks.ThetechnicalpotentialofbioLPGproductionfromMSWin2050inAfricacouldbeenoughtosatisfythecookingneedsofmorethan750millionpeople(GLPGP,2020;LiquidGasEurope,2021).Figure 4.11 Primary cooking fuel by share of population in emerging market and developing economies in the NZE IEA.A

1052、llrightsreserved.Traditional biomass is entirely replaced with modern energy by 2030, mainly in the form of bioenergy and LPG; by 2050, electricity, bioenergy and bioLPG meet most cooking needs Notes:Modernbioenergyincludesimprovedcookstoves,biogasandethanol.Liquefiedpetroleumgas(LPG)includesfossila

1053、ndrenewablefuel.20%40%60%80%100%202020252030203520402050OtherpollutingTraditionalbiomassModernbioenergyNaturalgasLPGElectricityWithAccessWithoutAccessChapter 4 | Wider implications of achieving net-zero emissions 169 4Theachievementofuniversalaccesstocleanenergyby2030requiresgovernmentsanddonorstopu

1054、texpandingaccessattheheartofrecoveryplansandprogrammes.Therewouldbe multiple benefits: investing heavily in energy access would provide an immediateeconomicboost,createlocaljobsandbringdurableimprovementstosocialwellbeingbymodernisinghealthservicesandfoodchains.IntheNZE,aroundUSD35billionisspenteach

1055、yearimprovingaccesstoelectricityandalmostUSD7billioneachyearoncleancookingsolutionsforpeopleinlowincomecountriesfromnowto2030.AirpollutionandhealthMorethan90%ofpeoplearoundtheworldareexposedtopollutedairtoday.Suchpollutionledtoaround5.4millionprematuredeathsin2020,underminingeconomicproductivityandp

1056、lacingextrastressonhealthcaresystems.Mostofthesedeathswereinemergingmarketanddevelopingeconomies.Justoverhalfwerecausedbyexposuretooutdoorairpollution;theremainderresultedfrombreathingpollutedairindoors,causedmainlybythetraditionaluseofbiomassforcookingandheating.Energyrelatedemissionsofthethreemajo

1057、rairpollutantssulphurdioxide(SO2),nitrogenoxides(NOX)andfineparticulatematter(PM2.5)fallrapidlyintheNZE.SO2emissionsfallby85%between2020and2050,mainlyasaresultofthelargescalephaseoutofcoalfiredpowerplantsandindustrialfacilities.NOXemissionsalsodropbyaround85%asaresultofthe increased use of electrici

1058、ty, hydrogen and ammonia in the transport sector. Theincreaseduptakeofcleancookingfuelsindevelopingcountries,togetherwithairpollutioncontrol measures in industry and transport, results in a 90% drop in PM2.5 emissions(Figure4.12).ThereductioninairpollutionintheNZEleadstoroughlyahalvinginprematuredea

1059、thsin2050comparedwith2020,savingthelivesofabout2millionpeopleperyear,around85%oftheminemergingmarketanddevelopingeconomies.Figure 4.12 Global premature deaths and air pollutant emissions in the NZE IEA.Allrightsreserved.Reductions in major air pollutants mean 2 million fewer premature deaths per yea

1060、r Sources:IEAanalysisbasedonIIASA.50MillionpeopleAdvancedeconomiesEmergingmarketanddevelopingeconomiesPrematuredeathsPM2.5SO2NOx2040608020402050Index(2020=100)Changeinairpollutant emissionsIEA. All rights reserved.170 International Energy Agency | Special Report 4.4.2 Affordabi

1061、lityTotalspendingonenergyEnergyaffordabilityisakeyconcernforgovernments,businessesandhouseholds.Globaldirectspendingonenergy,i.e.thetotalfuelbillspaidbyallendusers,whichtotalledUSD6.3trillionin2020,increasesby45%to2030and75%to2050,inlargepartreflectingpopulationandGDPgrowthoverthisperiod.Asashareofg

1062、lobalGDP,thefigureslookratherdifferent:totaldirectspendingonenergyholdssteadyataround8%outto2030(similartotheaverageoverthelastfiveyears),butthendeclinesto6%in2050.Thisdeclineoffsetsasignificant share of the higher cost of buying new, more efficient energyconsumingequipment.Aportionoftheincreaseinen

1063、ergyspendingintheNZEisrelatedtorisingCO2pricesandtheremovalofconsumptionsubsidiesforfossilfuelsandelectricity.CO2pricing(taxesandtradingschemes)paidbyendusersatitspeakgeneratesglobalrevenuesintheNZEofcloseto USD700billion each year between 2030 and 2035, before declining steadily due todecliningover

1064、allemissions:theserevenuescouldberecycledintoeconomiesorotherwiseusedtoimproveconsumerwelfare,particularlyforlowincomehouseholds.TheNZEalsosees the progressive removal of consumption subsidies for fossil fuels, many of whichdisproportionally benefit wealthier segments of the population that use more

1065、 of thesubsidisedfuel.Phasingoutthesubsidieswouldprovidemoreefficientpricesignalsforconsumers,andspurmoreenergyconservationandmeasurestoimproveenergyefficiency.Theimpactofphasingoutsubsidiesonlowerincomehouseholdscouldbeoffsetthroughdirectpaymentschemesorothermeansatloweroverallcoststotheeconomy.Fig

1066、ure 4.13 Global energy spending by fuel in the NZE IEA.Allrightsreserved.Total energy spending increases by 75% to 2050, mainly on electricity Note:Other=hydrogenbasedandsyntheticfuels,anddistrictheating.20%40%60%80%100%2010 2020 2030 2040 2050OilproductsNaturalgasCoalElectricityBioenergyOther246810

1067、200402050TrillionUSD(2019)Chapter 4 | Wider implications of achieving net-zero emissions 171 4The transformation of the global energy system in the NZE drives a major shift in thecompositionofenergyspending.SpendingonelectricityatUSD2.7trillionin2020(45%oftotalenergyspending)exceededspend

1068、ingonoilproductsforthefirsttimeanditrisestooverUSD8.5trillionin2050(80%oftotalenergyspending)(Figure4.13).Retailelectricitypricesincreaseby50%onaverage,contributingtothetotalincrease.Spendingonoil,whichhasdominatedoverallenergyspendingfordecades,goesintolongtermdeclineinthe2020s,itsshareofspendingfa

1069、llingfrom40%in2020tojust5%in2050.Spendingonnaturalgasandcoalalsodeclinesinthelongterm,offsetbyhigherspendingonlowemissionsfuels.SpendingonbioenergyreachesaboutUSD900billionperyearby2040,whileotherlowemissionsfuels,includinghydrogenbasedproducts,gainafootholdandestablishamarketworthofaroundUSD600bill

1070、ionperyearby2050.HouseholdspendingonenergyDirectspendingbyhouseholdsonenergy,includingforheating,cooling,electricityandfuelforpassengercars,fallsasashareofdisposableincomeintheNZE,thoughtherearelargedifferencesbetweencountries(Figure4.14).Figure 4.14 Average annual household energy bill in the NZE I

1071、EA.Allrightsreserved.The proportion of disposable household income spent on energy is stable in emerging market and developing economies, and drops substantially in advanced economies Note:Hydrogenbasedincludeshydrogen,ammoniaandsyntheticfuels.Inadvancedeconomies,theaverageannualbilldeclinesfromabou

1072、tUSD2800in2020toUSD2300 in 2030, thanks to a strong push on energy efficiency and costeffectiveelectrification.Oilproductsmakeupclosetohalfofhouseholdenergybillsin2020,butthisfallsto30%in2030andalmostzeroin2050,duetoarapidshifttoEVsandtodownwardpressureonoilprices.Naturalgasbills,whichmakeupalmost10

1073、%ofthetotaltoday,also1%2%3%4%5%6%500025003000202020302050202020302050USD(2019)HydrogenbasedDistrictheatingBioenergyElectricityCoalNaturalgasOilproductsShareofincomeAdvancedeconomiesEmergingmarketanddevelopingeconomies(rightaxis)IEA. All rights reserved.172 International Energy Agency | Sp

1074、ecial Report falltoalmostzeroin2050withtheelectrificationofheatingandcooking.Electricityrisesfromabout35%ofhouseholdfuelbillsin2020to90%in2050,increasingthesensitivityofhouseholdstoelectricitypricesandconsumption.Increasingincomesmeanthathouseholdspendingonenergyasashareofdisposableincomedropsfrom4%

1075、in2020to2%in2050.Inemergingmarketanddevelopingeconomies,thereisahugeincreaseindemandformodernenergyserviceslinkedtoexpandingpopulations,economicgrowth,risingincomesanduniversalaccesstoelectricityandcleancookingoptions.Asinadvancedeconomies,electricityaccountsforthevastmajorityofenergybillsin2050.The

1076、useofmoreefficientappliancesandequipmentcurbssomeoftheincreaseindemand,buthouseholdbillsstillincreaseintheNZEbyover60%to2030andmorethandoubleby2050.Asapercentageofdisposableincome,however,billsinemergingmarketanddevelopingeconomiesremainaround4%,andtherearelargesocialandeconomicbenefitsfromincreased

1077、energyuse.Figure 4.15 Change in household spending on energy plus energy-related investment in the NZE relative to 2020 IEA.Allrightsreserved.Total household spending on energy increases modestly in emerging market and developing economies, leaving over 90% of additional income available for other u

1078、ses Taking into account additional investment in electricityconsuming equipment such asefficientappliancesandelectricvehicles,spendingonenergyplusrelatedinvestmentisUSD1.30higherperdayperhouseholdgloballyin2050thanin2020intheNZE.Thismodestincreasemeansthatexpenditureonenergymakesupasmallershareofdis

1079、posableincomein2050thanitdoestoday,thoughtheimpactsvarybycountry.Inadvancedeconomies,additionalinvestmentinelectrification,energyefficiencyandrenewableenergycostsaboutUSD750perhouseholdby2030andUSD720in2050,whichisfullyoffsetbyreductionsinthelevelofenergybills(Figure4.15).Inemergingmarketanddevelopi

1080、ngeconomies,a2%1%0%1%2%020302050USD(2019)OtherRenewablesEnergyefficiencyElectrificationEnergybillperNetchangeNetchangeshareofInvestmentrecoveryVariablecostsdisposableincome(rightaxis)householdEmergingmarketanddevelopingeconomiesAdvancedeconomiesChapter 4 | Wider implications of

1081、 achieving net-zero emissions 173 4growingbasketofenergyservicesmeansincreaseduseofenergy,andtotalenergyrelatedhouseholdspendingincreases.Additionalinvestmentmoderatesthechangeinenergybills,with the result that total energyrelated spending takes 2 percentage points more ofhouseholddisposableincomein

1082、2030and1percentagepointmorein2050thantoday.4.4.3 BehaviouralchangesBehaviouralchangesplayanimportantpartinreducingenergydemandandemissionsintheNZE,especiallyinsectorswheretechnicaloptionsforcuttingemissionsarelimitedin2050.Whileitiscitizensandcompaniesthatmodifytheirbehaviour,thechangesaremostlyenab

1083、ledbythepoliciesandinvestmentsmadebygovernments,andinsomeinstances,theyarerequiredbylawsorregulations.TheCovid19pandemichasincreasedgeneralawarenessofthepotentialeffectivenessofbehaviouralchanges,suchasmaskwearing,andworkingandschoolingathome.Thecrisisdemonstratedthatpeoplecanmakebehaviouralchangesa

1084、tsignificantspeedandscaleiftheyunderstandthechangestobejustified,andthatitisnecessaryforgovernmentstoexplainconvincinglyandtoprovideclearguidanceaboutwhatchangesareneededandwhytheyareneeded.Figure 4.16 Emissions reductions from policy-driven and discretionary behavioural changes by citizens and comp

1085、anies in the NZE IEA.Allrightsreserved.Three-quarters of the emissions saved by behavioural changes could be directly influenced or mandated by government policies Aroundthreequartersoftheemissionssavedbybehaviouralchangesbetween2020and2050 in the NZE could be directly influenced or mandated by gove

1086、rnment policy(Figure4.16).Theyincludemitigationmeasuressuchasphasingoutpollutingcarsfromlargecities and reducing speed limits on motorways. The other onequarter involves morediscretionarybehaviouralchanges,suchasreducingwastefulenergyuseinhomesand203020402050203020402050MtCOInfluencedorma

1087、ndatedbypoliciesDiscretionarybehaviouralchangesCitizensCompaniesIEA. All rights reserved.174 International Energy Agency | Special Report offices, though even these types of changes could be promoted through awarenesscampaigns and other means. Around 10% of emissions savings directly influenced orma

1088、ndated by government policy would require new or redirected investment ininfrastructure.Forexample,theshiftintheNZEfromregionalflightstohighspeedrailwouldnecessitatebuildingaround170000kilometresofnewtrackgloballyby2050(atriplingof2020levels).Behaviouralchangesmadebycitizensandcompaniesplayaroughlye

1089、qualroleinreducingemissionsintheNZE.Mostchangesinroadtransportandenergysavinginhomeswoulddependonindividuals,whereastheprivatesectorhastheprimaryroleinreducingenergydemand in commercial buildings and pursuing materials efficiency in manufacturing.Companiescanalsoinfluencebehaviouralchangesindirectly

1090、,forexample,bypromotingtheuseofpublictransportbyemployeesthatcommuteorencouragingworkingfromhome.However,asimpledistinctionbetweentheroleforindividualsandcompaniesmasksacomplexunderlyingdynamic:itisultimatelycitizensasconsumersofenergyrelatedgoodsandserviceswhoshapecorporatestrategies,butatthesameti

1091、mecompaniesdomuchtoinfluenceandgenerateconsumerdemandthroughmarketingandadvertising.IntheNZE,consumers and companies move together in adopting behavioural changes, withgovernmentssettingthedirectionofthosechangesandfacilitatingthemviaeffectiveandsustainedpolicysupport.ThebehaviouralchangesintheNZEha

1092、ppentodifferentextentsindifferentregions,andreflectarangeofgeographicalandinfrastructureconstraints,aswellasexistingbehaviouralnormsandculturalpreferences.Incountrieswithlowratesofcarownershiporenergyservicedemandinbuildings,manyofthebehaviouralchangesinadvancedeconomiesinNZEwouldnotberelevantorappr

1093、opriate.Asaresult,aroundhalfoftheemissionssavingsfrombehaviouralchangesareinemergingmarketanddevelopingeconomies,despitearound95%ofactivitygrowthinbuildingsandroadtransportbetween2020and2050occurringthere.Nevertheless, there are significant opportunities in emerging market and developingeconomies fo

1094、r materials efficiency and urban design to decouple growth in economicprosperityandenergyservicesfromincreasesinemissions.Forexample,around85%ofCO2emissionsreductionsfromcementandsteelmakingin2050areduetogainsinmaterialsefficiencyinemergingmarketanddevelopingeconomies.Citiesareimportanttothebehaviou

1095、ralchangesintheNZE.Urbandesigncanreducetheaverage city dwellers carbon footprint by up to 60% by shaping lifestyle choices andinfluencingdaytodaybehaviour.Forexample,compactcitieswithclusteredamenitiescanshortenaveragetriplengths;digitalisationcanhelpsharedprivatemobilitytobecomethedefactooptiontoac

1096、commodatemuchofthegrowthinservicedemand;andurbangreeninfrastructurecanreducecoolingdemand(Feyisa,Dons&Meilby,2014).Chapter 4 | Wider implications of achieving net-zero emissions 175 44.5 Governments4.5.1 EnergysecurityEnergysecurityisanimportantconsiderationforgovernmentsandthosetheyserve,andthepath

1097、waytonetzeroemissionsmusttakeaccountofit.Concernsaboutenergysecurityhavetraditionallybeenassociatedwithoilandnaturalgassupplies.ThedropinoilandgasdemandandtheincreaseddiversityoftheenergysourcesusedintheNZEmayreducesomerisks,buttheydonotdisappear.Therearealsonewpotentialvulnerabilitiesassociatedwith

1098、theneedtomaintainreliable,flexibleandsecureelectricitysystems,andwiththeincreaseindemandforrawmineralsforcleanenergytechnologies.Improvingenergyefficiencyremainsthecentralmeasureforincreasingenergysecurityevenwithrapidgrowthinlowemissionselectricitygeneration,thesafestenergysuppliesarethosethatareno

1099、tneeded.OilandgassecurityNonewoilandnaturalgasfieldsarerequiredintheNZEbeyondthosealreadyapprovedfordevelopment,andsuppliesbecomeincreasinglyconcentratedinasmallnumberoflowcostproducers.Foroil,OPECsshareofglobaloilsupplygrowsfromaround37%inrecentyearsto52%in2050,alevelhigherthanatanypointinthehistor

1100、yofoilmarkets(Figure4.17).Fornaturalgas,interregionalliquefiednaturalgas(LNG)tradeincreasesfrom420bcmin2020overthenextfiveyearsbutitthenfallstoaround160bcmin2050.Nearlyallexportsin2050comefromthelowestcostandlowestemissionsproducers.Thismeansthattheimportanceofensuringadequatesuppliesofoilandnatural

1101、gastothesmoothfunctioningoftheglobalenergysystemwouldbequantitativelylowerin2050thantoday,butitdoesnotsuggestthattheriskofashortfallinsupplyorsuddenpriceriseisnecessarilygoingtodiminish,andashortfallorsuddenpricerisewouldstillhavelargerepercussionsforanumberofsectors.Figure 4.17 Global oil supply an

1102、d LNG exports by region in the NZE IEA.Allrightsreserved.Increased reliance on OPEC and other producer economies suffering from falling oil and gas revenues could pose a risk to supply security in consuming countries 10%20%30%40%50%204060802050ShareofOPEC(rightaxis)Oil (mb/d)OPECNonOPEC10

1103、0200300400500020302050NorthAmericaRussiaAustraliaSoutheastAsiaMiddleEastAfricaOtherLNGexports(bcm)IEA. All rights reserved.176 International Energy Agency | Special Report Evenifthetimingandambitionofemissionreductionpoliciesareclear,thechangesintheNZEclearlyhaveimplicationsforproducersan

1104、dconsumersalike.Manyproducereconomieswouldseeoilandgasrevenuesdroptosomeofthelowesteverlevels(seesection4.2.2).Eveniftheseproducersincreasetheirmarketshare,anddiversifytheireconomiesandsourcesoftaxrevenue,theyarelikelytostruggletofinanceessentialspendingatcurrentlevels.Thiscouldhaveknockoneffectsfor

1105、socialstability,andthatinturncouldpotentiallythreatenthesmoothdeliveryofoilandgastoconsumingcountries.Movesonthepartofproducereconomiestogainmarketshareorafailuretomaintainupstreamoperationswhilemanagingtheextremestrainsthatwouldbeplacedontheirfiscalbalancescouldleadtoturbulentandvolatilemarkets,gre

1106、atlycomplicatingthetaskfacingpolicymakers.ElectricitysecurityTherapidelectrificationofallsectorsintheNZE,andtheassociatedincreaseinelectricitysshareoftotalfinalconsumptionfrom20%in2020tonearly50%in2050,putselectricityevenmoreattheheartofenergysecurityacrosstheworldthanitalreadyis(IEA,2020h).Greaterr

1107、elianceonelectricityhasbothpositiveandnegativeimplicationsforoverallenergysecurity. One advantage for energyimporting countries is that they become moreselfsufficient,sinceamuchhighershareofelectricitysupplyisbasedondomesticsourcesintheNZEthanisthecaseforotherfuels.Howevertheincreasedimportanceofele

1108、ctricitymeans that any electricity system disruption would have larger impacts. Electricityinfrastructureisoftenmorevulnerabletophysicalshockssuchasextremeweathereventsthan pipelines and underground storage facilities, and climate change is likely to putincreasingpressureonelectricitysystems,forexam

1109、plethroughmorefrequentdroughtsthatmightdecreasetheavailabilityofwaterforhydropowerandforcoolingatthermalpowerplants.Theresilienceofelectricitysystemsneedstobeenhancedtomitigatetheserisksandmaintain electricity security, including through more robust contingency planning, withsolutionsbasedondigitalt

1110、echnologiesandphysicalsystemhardening(IEA,2021b).Cybersecuritycouldposeanevengreaterrisktoelectricitysecurityassystemsincorporatemoredigitalisedmonitoringandcontrolsinagrowingnumberofpowerplants,electricitynetworkassetsandstoragefacilities.Policymakershaveacentralparttoplayinensuringthatthecyberresi

1111、lienceofelectricityisenhanced,andthereareanumberofwaysinwhichtheycanpursuethis(IEA,2021c).Maintaining electricity security also requires a range of measures to ensure flexibility,adequacyandreliabilityatalltimes.Enhancedelectricitysystemflexibilityisofparticularimportance as the share of variable re

1112、newables in the generation mix rises. As aconsequence,electricitysystemflexibilityquadruplesgloballyintheNZEinparallelwithamorethantwoandahalffoldincreaseinelectricitysupply.9Aportfolioofflexibilitysourcesincludingpowerplants,energystorageanddemandresponsesupportedbyelectricity9Electricitysystemflex

1113、ibilityisquantifiedherebasedonhourtohourrampingneeds,whichisonlyoneaspectofflexibilitythatalsoincludesactionsonmuchshortertimescalestomaintainfrequencyandotherancillaryservices.Chapter 4 | Wider implications of achieving net-zero emissions 177 4networksisusedtomatchsupplyanddemandatalltimesoftheyear

1114、,undervaryingweatherconditionsandlevelsofdemand.ThereisasignificantshiftintheNZEfromusingcoalandgasfiredpowerplantsfortheprovisionofflexibilitytotheuseofrenewables,hydrogen,batterystorage,anddemandsideresponse(Figure4.18).Figure 4.18 Electricity system flexibility by source in the NZE IEA.Allrightsr

1115、eserved.To meet four-times the amount of hour-to-hour flexibility needs, batteries and demand response step up to become the primary sources of flexibility Electricitydemandalsobecomesmuchmoreflexibleasaresultoftheuseofdemandresponsemeasures,e.g.toshiftconsumptiontotimeswhenrenewableenergyisplentifu

1116、l.Conventionalsourcesofdemandresponsesuchasmoderatingindustryactivitiesremainimportant,butnewareasofdemandresponsesuchassmartchargingofEVsunlockvaluablenewwaysofsupplementingthem.10AstheEVfleetexpandsintheNZE,EVsprovideasignificantportionoftotalelectricitysystemflexibility.Althoughthetechnologyalrea

1117、dyexists,therolloutofsmartcharginghasbeenslowtodateduetoinstitutionalandregulatorybarriers;thesehurdlesareovercomeintheNZE.Measuresarealsoimplementedtoensurethatthedigitalisationofchargingandothersourcesofflexibilitydoesnotcompromisecybersecurity,andthatpotentialsocialacceptanceissuesareaddressed.En

1118、ergystoragealsoplaysanimportantroleintheprovisionofflexibilityintheNZE.Thedeploymentofbatterystoragesystemsisalreadystartingtoaccelerateandtocontributetothemanagementofshortdurationflexibilityneeds,butthemassivescaleupto3100GWofstorage in 2050 (with four hour duration on average) envisaged in the NZ

1119、E hinges onovercomingcurrentregulatoryandmarketdesignbarriers.Pumpedhydropoweroffersanattractivemeansofprovidingflexibilityoveramatterofhoursanddays,whilehydrogenhas10Smartchargerssharerealtimedatawithacentralisedplatformtoallowsystemoperatorstooptimisechargingprofilesbasedonhowmuchenergythevehiclen

1120、eedsoveraspecifiedspanoftime,howmuchisavailable,thepriceofwholesaleelectricity,gridcongestionandotherparameters.20%40%60%80%100%2050202020502020CoalNaturalgasOilHydrogenbasedNuclearHydroOtherrenewablesBatteriesDemandresponseAdvancedeconomiesEmerging marketanddevelopingeconomiesIEA. All rights reserv

1121、ed.178 International Energy Agency | Special Report thepotentialtoplayanimportantpartinlongertermseasonalstoragesinceitcanbestoredinconvertedgasstoragefacilitiesthathaveseveralordersofmagnitudemorecapacitythanbatterystorageprojects.Dispatchablepowerisessentialtothesecuretransitionofelectricitysystem

1122、s,andintheNZEthiscomesincreasinglyfromlowemissionssources.Hydropowerprovidesasignificantpartof flexibility in many electricity systems today, and this continues in the future, withparticularemphasisonexpandingpumpedhydrofacilities.Nuclearpowerandgeothermalplants,thoughdesignedforbaseloadgeneration,a

1123、lsoprovideadegreeofflexibilityintheNZE,butthereareconstraintsonhowmuchthesesourcescanbeexpanded.Thisleavesanimportantroleforthermalpowerplantsthatareequippedwithcarboncaptureoruselowemissionsfuels.Forexample,theuseofsustainablebiomassorlowemissionsammoniainexistingcoalplantsoffersawayofallowingthese

1124、facilitiestocontinuetocontributetoflexibilityandcapacityadequacy,whileatthesametimereducingCO2emissions.Additionalmeasureswillalsobenecessarytomaintainpowersystemstability(Box4.1).Box 4.1 Power system stability with high shares of variable renewables Stabilityisakeyfeatureofelectricitysecurity,allow

1125、ingsystemstoremaininbalanceandwithstand disturbances such as sudden generator or grid outages. Historically,conventionalgeneratorssuchasnuclear,hydroandfossilfuelshavebeencentraltoelectricitysystemstability,providinginertiawithrotatingmachinesthatallowstoredkineticenergytobeinstantlyconvertedintopow

1126、erincaseofasystemdisturbance,andgeneratingavoltagesignalthathelpsallgeneratorsremainsynchronous.Incontrast,newertechnologiessuchassolarPV,windandbatteriesareconnectedtothesystemthroughconverters.Theygenerallydonotcontributetosysteminertiaandareconfigured as “gridfollowing” units, synchronising to co

1127、nventional generators.Maintainingsystemstabilitywillcallfornewapproachesastheshareofconverterbasedresources,andinparticularvariablerenewables,risesmuchhigherinelectricitysystems.Thereisagrowingbodyofknowledgeandstudiesonstabilityinsystemswithhighsharesof variable renewables. For example, a recent jo

1128、int study by the IEA and RTE, thetransmissionsystemoperatorinFrance,analysestheconditionsunderwhichitwouldbetechnicallyfeasibletointegratehighsharesofvariablerenewablesinFrance(IEA,2021d).Basedonthefindingsofthisstudy: Oneoptiontoensurestabilityforanetzeropowersystemistomaintainaminimumamountofconve

1129、ntionalgenerationfromlowcarbontechnologiesduringhoursofhighsharesVREoutput.Thisapproachtomaintainstabilitycomesatthecostofsolarandwindcurtailmentathighshares. Updatedgridcodescanbeusedtocallforvariablerenewablesandbatteriestoprovidefastfrequencyresponseservices,whichcanhelpreducetheamountofconventio

1130、nalgenerationneededforstability.Chapter 4 | Wider implications of achieving net-zero emissions 179 4 Synchronouscondensersareabletoprovideinertiawithoutgeneratingelectricity.The technology is already proven at GWscale in Denmark and also in SouthAustralia,butexperienceneedstobeexpandedatlargerscale.

1131、 Gridformingconverterscanallowvariablerenewablesandbatteriestogenerateavoltagesignal,thoughexperiencewiththisapproachneedstomovebeyondmicrogridsandsmallislandstolargeinterconnectedsystems.Demonstrationprojects,stakeholderconsultationsandinternationalcollaborationwillbecriticaltofullyunderstandthemer

1132、itsofeachofthesefourapproachesandthescopeforaportfolioofoptionsthatwouldmostcosteffectivelyachievenetzeroemissionswhilemaintainingelectricitysecurity.Electricitynetworkssupportandenabletheuseofallsourcesofflexibility,balancingdemandandsupplyoverlargeareas.Timelyinvestmentingridstominimisecongestiona

1133、ndexpandthesizeoftheareaswheresupplyanddemandarebalancedwillbecriticaltomakingthebestuseofsolarPVandwindprojects,andensuringaffordableandreliablesuppliesofelectricity.ExpandinglongdistancetransmissionalsomakesakeycontributionintheNZE,sincealackofavailablelandneardemandcentresandotherfactorsmeannewso

1134、urcesofgenerationareoftenlocatedinremoteareas.Itisimportantthatnewtransmissionsystemsarebuiltwithvariable,bidirectionaloperationinmindinordertomaximisetheuseofavailableflexibilitysources,andthatregulatoryandmarketarrangementssupportflexibleconnections between systems. The key value of interconnectio

1135、ns comes fromcomplementary electricity demand and wind patterns: solarPV output is more highlycorrelatedthanwindoverlargeareas.TheNZEseesamajorincreaseindemandforcriticalmineralssuchascopper,lithium,nickel,cobaltandrareearthelementsthatareessentialformanycleanenergytechnologies.Thereareseveralpotent

1136、ialvulnerabilitiesthatcouldhindertheadequatesupplyofthesemineralsandleadtopricevolatility(IEA,2021a).Todaysproductionandprocessingoperationsformanymineralsarehighlyconcentratedinasmallnumberofcountries,makingsuppliesvulnerabletopoliticalinstability,geopoliticalrisksandpossibleexportrestrictions.Inma

1137、nycases, there are also concerns about landuse changes, competition for scarce waterresources,corruptionandmisuseofgovernmentresources,fatalitiesandinjuriestoworkers,andhumanrightsabuses,includingtheuseofchildlabour.Newcriticalmineralprojectscanhavelongleadtimes,sotherapidincreaseindemandintheNZEcou

1138、ldleadtoamismatchintimingbetweensupplyanddemand.Theinternationaltradeandinvestmentregimeiskeytomaintainingreliablemineralsupplies,butpolicysupportandinternationalcoordinationwillbeneededtoensuretheapplicationofrigorousenvironmentalandsocialregulations.IEA. All rights reserved.180 International Energ

1139、y Agency | Special Report 4.5.2 InfrastructureGettingtonetzeroemissionswillrequirehugeamountsofnewinfrastructureandlotsofmodifications to existing assets. Energy infrastructure is transformed in the NZE as allcountries and regions move from systems supporting the use of fossil fuels and thedistribut

1140、ionofconventionallygeneratedelectricitytosystemsbasedlargelyonrenewableelectricityandlowemissionsfuels.Inmanyemergingmarketanddevelopingeconomies,theprovisionoflargeamountsofinfrastructurewouldbenecessaryinthecomingdecadesinanycase,creatingawindowofopportunitytosupportthetransitiontoanetzeroemission

1141、seconomy.Inallcountries,governmentswillplayacentralroleinplanning,financingandregulatingthedevelopmentofinfrastructure.SomeofthemaininfrastructurecomponentselectricitynetworksandEVcharging,pipelinessystemsforlowemissionsfuelsandCO2,andtransportinfrastructurearediscussedbelow.Therapidincreaseinelectr

1142、icitydemandintheNZEandthetransitiontorenewableenergycallforanexpansionandmodernisationofelectricitynetworks(Figure4.19).Thiswouldrequireasharpreversalintherecenttrendofdeclininginvestment:failuretoachievethiswouldalmostcertainlymaketheenergytransitionfornetzeroemissionsimpossible.Tariffdesignandperm

1143、ittingproceduresalsoneedtoberevisedtoreflectfundamentalchangesintheprovisionandusesofelectricity.Someofthemainconsiderationsinclude: Longdistancetransmission.MostofthegrowthinrenewablesintheNZEcomesfromcentralisedsources.Yetthebestsolarandwindresourcesareofteninremoteregions,requiringnewtransmission

1144、connections.Ultrahighvoltagedirectcurrentsystemsarelikelytoplayanimportantroleinsupportingtransmissionoverlongdistances. Localdistribution.EnergyefficiencygainsinhouseholdsandwideruseofrooftopsolarPVmeansurpluselectricitywillbeavailablemoreoften,whileelectricheatpumpsandresidential EV charging point

1145、s will require electricity to be more widely available.Togetherthesedevelopmentspointtotheneedforsubstantialincreasesindistributionnetworkcapacity. Grid substations. The massive expansion of solar PV and wind requires new gridsubstations: their capacity expands by more than 57000GW in the NZE by 203

1146、0,doublingcurrentcapacityglobally. EVcharging.MajornewpublicchargingnetworksarebuiltintheNZE,includinginworkplaces,highwayservicestationsandresidentialcomplexes,tosupportEVexpansionandlongdistancedrivingonhighways. Digitalisationofnetworks.Withalargeincreaseintheuseofconnecteddevices,thedigitalisati

1147、onofgridassetssupportsmoreflexiblegridoperations,bettermanagementofvariablerenewablesandmoreefficientdemandresponse.Chapter 4 | Wider implications of achieving net-zero emissions 181 4Figure 4.19 Annual average electricity grid expansion, replacement and substation capacity growth in the NZE IEA.All

1148、rightsreserved.Grid and substation expansion is driven largely by the massive deployment of renewables and electrification of end-uses, with a rising digital share of infrastructure Note:Substationcapacityhereassumesactiveelectricityisequaltoapparentelectricity.Pipelinescontinuetoplayakeyroleinthetr

1149、ansmissionanddistributionofenergyintheNZE: Giventherapiddeclineoffossilfuels,significantinvestmentinnewoilandgaspipelinesarenotneededintheNZE.Howeverinvestmentisneededtolinktheproductionoflowemissionsliquidsandgaseswithconsumptioncentres,andtoconvertexistingpipelinesandassociateddistributioninfrastr

1150、ucturefortheuseoftheselowemissionsfuels.Somelowemissionsfuels,suchasbiomethaneandsynthetichydrogenbasedfuels,canmakeuseofexistinginfrastructurewithoutanymodifications,butpurehydrogenrequiresaretrofitofexistingpipelines.Newdedicatedhydrogeninfrastructureisalsoneededinthe NZE, for example to move hydr

1151、ogen produced in remote areas with excellentrenewableresourcestodemandcentres. TheexpansionofCCUSintheNZErequiresinvestmentinCO2transportandstoragecapacity.By2050,7.6GtofCO2iscapturedworldwide,requiringalargeamountofpipelineandshippinginfrastructurelinkingthefacilitieswhereCO2iscapturedwithstorage s

1152、ites. Industrial clusters, including ports, may offer the best neartermopportunities to build CO2 pipeline and hydrogen infrastructure, as the variousindustriesinthoseclustersusingthenewinfrastructurewouldbeabletosharetheupfrontinvestmentneeds(Figure4.20).20%40%60%2462003140204150Millionk

1153、mRefurbishmentsRenewablesanddemandincreaseShareofdigitalisation(rightaxis)Gridexpansionandreplacements484150ThousandGWGridsubstationcapacitygrowthIEA. All rights reserved.182 International Energy Agency | Special Report Figure 4.20 Illustrative example of a shared CO2 pipeline

1154、in an industrial cluster IEA.Allrightsreserved.Deployment of technologies like CCUS and hydrogen and their enabling infrastructure would benefit strongly from a cross-sectoral approach in industrial clusters Transformingtransportinfrastructurerepresentsbothachallengeandanopportunity.Thechallengearis

1155、esfromthepotentialincreaseintheenergyandcarbonintensityofeconomicgrowthduringtheinfrastructuredevelopmentphase.11Steelandcementarethetwomaincomponents of virtually all infrastructure projects, but they are also among the mostchallengingsectorstodecarbonise.Theopportunitycomesfromthescopethatexistsin

1156、somecountriestodevelopinfrastructurefromscratchinawaythatiscompatiblewiththenetzerogoal.CountriesundergoingrapidurbanisationtodaycandesignandsteernewinfrastructuredevelopmenttowardshigherurbandensityandhighcapacitymasstransitintandemwithEVchargingandlowemissionsfuellingsystems.Railhasanimportantpart

1157、toplayastransportinfrastructureisdeveloped.TheNZEseeslargescaleinvestmentinallregionsinhighspeedtrainstoreplacebothlongdistancecardrivingandshorthaulaviation.Italsoseeslargescaleinvestmentinallregionsintrack,controlsystems,rollingstockmodernisationandcombinedfreightfacilitiestoimprovespeedandflexibi

1158、lityforjustintimelogisticaloperationsandthussupportashiftoffreightfromroadtorail,especiallyforcontainertraffic.11ThemodellingfortheNZEincorporatestheincreaseinsteelandcementthatisrequiredtobuildadditionaltransport infrastructure (roads, cars and trucks) and energy infrastructure, e.g. power plants a

1159、nd windturbines.Chapter 4 | Wider implications of achieving net-zero emissions 183 44.5.3 TaxrevenuesfromretailenergysalesTheslumpintheconsumptionoffossilfuelsrequiredtogettonetzeroemissionswouldresultinthelossofalargeamountoftaxrevenueinmanycountries,giventhatfuelssuchasoilbasedtransportfuelsandnat

1160、uralgasareoftensubjecttohighexciseorotherspecialtaxes.Inrecentyears,energyrelatedtaxesaccountedforaround4%oftotalgovernmenttax revenues in advanced economies on average and 3.5% in emerging market anddevelopingeconomies,buttheyprovidedasmuchas10%insomecountries(OECD,2020).Figure 4.21 Global revenues

1161、 from taxes on retail sales of oil and gas in the NZE IEA.Allrightsreserved.Tax revenues slump from retail sales of oil and gas Taxrevenuefromoilandnaturalgasretailsalesfallsbycloseto90%between2020and2050intheNZE(Figure4.21).Governmentsarelikelytoneedtorelyonsomecombinationofothertaxrevenuesandpubli

1162、cspendingreformstocompensate.Sometaxationmeasuresfocusedontheenergysectorcouldbeuseful.However,anysuchtaxeswouldneedtobecarefully designed to minimise their impact on lowincome households, as poorerhouseholdsspendahigherpercentageoftheirdisposableincomeonelectricityandheating.Optionsforenergyrelated

1163、taxesinclude: CO2prices.TheseareintroducedinallregionsintheNZE,albeitatdifferentlevelsforcountriesandsectors,whichprovideadditionalrevenuestreams.Thereductioninoilandnaturalgasexcisetaxesismorethancompensatedoverthenext15yearsbyhigherrevenuesfromCO2pricesrelatedtothesefuelspaidbyendusersandothersect

1164、ors,butthesetoofallastheglobalenergysystemmovestowardsnetzeroemissions. Roadfeesandcongestioncharges.Thesewouldhavetheaddedbenefitofdiscouragingdrivingandencouragingswitchingtootherlesscarbonintensivemodesoftransport.2004006008000203020402050BillionUSD(2019)OilexcisetaxNaturalgasexcisetax

1165、IEA. All rights reserved.184 International Energy Agency | Special Report Increasingtaxationonelectricity.Highertaxesonallelectricitysalescouldgeneratesubstantialrevenues,especiallysincelargeincreasesinpriceoftenhavelittleeffectonconsumption.Thismightbecounterproductive,however,asitwouldreducethecos

1166、teffectivenessofbothEVsandheatpumps,whichcouldslowtheiradoption,althoughthisriskcouldbemitigatedbytheintroductionofCO2prices.Naturalgasiscurrentlylesstaxedthantransportfuelsinmostcountries.IntroducingandraisingCO2pricesfornaturalgasusedinbuildings,mostlyforheating,wouldaccelerateenergyefficiencyimpr

1167、ovementsandboostgovernmentrevenues,althoughcarewouldbeneededtoavoiddisproportionatelyimpactinglowincomehouseholds.Taxingnaturalgasused in industry would improve the competitiveness of less carbonintensive fuels andtechnologiessuchashydrogen,butwouldruntheriskofunderminingtheinternationalcompetitiven

1168、ess of energyintensive sectors and carbon leakage in the absence ofcoordinatedglobalactionorbordercarbontaxadjustments.4.5.4 InnovationWithoutamajoraccelerationincleanenergyinnovation,reachingnetzeroemissionsby2050willnotbeachievable.Technologiesthatareavailableonthemarkettodayprovidenearlyallofthee

1169、missionsreductionsrequiredto2030intheNZEtoputtheworldontrackfor netzero emissions by 2050. However, reaching netzero emissions will require thewidespreaduseafter2030oftechnologiesthatarestillunderdevelopmenttoday.In2050,almost50%ofCO2emissionsreductionsintheNZEcomefromtechnologiescurrentlyatdemonstr

1170、ationorprototypestage(Figure4.22).Thisshareisevenhigherinsectorssuchasheavyindustryandlongdistancetransport.Majorinnovationeffortsarevitalinthisdecadesothatthetechnologiesnecessaryfornetzeroemissionsreachmarketsassoonaspossible.Figure 4.22 Global CO2 emissions changes by technology maturity category

1171、 in the NZE IEA.Allrightsreserved.While the emissions reductions in 2030 mostly rely on technologies on the market, those under development today account for almost half of the emissions reductions in 2050 6045302050GtCOActivityBehaviourMatureMarketuptakeDemonstrationLargeprototypeSmallpr

1172、ototype/labNetreductionsOnthemarketUnderdevelopmentChapter 4 | Wider implications of achieving net-zero emissions 185 4InnovationcyclesforearlystagecleanenergytechnologiesaremuchmorerapidintheNZEthanwhathastypicallybeenachievedhistorically,andmostcleanenergytechnologiesthathavenotbeendemonstratedats

1173、caletodayreachmarketsby2030atthelatest.Thismeansthetimefromfirstprototypetomarketintroductionisonaverage20%fasterthanthefastestenergytechnologydevelopmentsinthepast,andaround40%fasterthanwasthecaseforsolarPV(Figure4.23).Technologiesatthedemonstrationstage,suchasCCUSincementproductionorlowemissionsam

1174、moniafuelledships,arebroughtintothemarketinthenextthreetofouryears.Hydrogenbasedsteelproduction,directaircapture(DAC)andothertechnologiesatthelargeprototypestagereachthemarketinaboutsixyears,whilemosttechnologiesatsmallprototypestagesuchassolidstaterefrigerantfreecoolingorsolidstatebatteriesdosowith

1175、inthecomingnineyears.Figure 4.23 Time from first prototype to market introduction for selected technologies in the NZE and historical examples IEA.Allrightsreserved.Technology development cycles are cut by around 20% from the fastest developments seen in the past Note:H2=hydrogen;CCUS=carboncapture,

1176、utilisationandstorage;LED=lightemittingdiode;Liion=lithiumion.Sources:IEAanalysisbasedonCarbonEngineering,2021;Greco,2019;Tenova,2018;Gross,2018;EuropeanCementResearchAcademy,2012;Kamaya,2011;Zemships,2008.Anaccelerationofthismagnitudeisclearlyambitious.Itrequirestechnologiesthatarenotyet available

1177、on the market to be demonstrated very quickly at scale in multipleconfigurationsandinvariousregionalcontexts.Inmostcases,thesedemonstrationsarerunin parallel in the NZE. This is in stark contrast with typical practice in technologydevelopment:learningisusuallytransferredacrossconsecutivedemonstratio

1178、nprojectsindifferentcontextstobuildconfidencebeforewidespreaddeploymentcommences.Theaccelerationthatisneededalsorequiresalargeincreaseininvestmentindemonstrationprojects.IntheNZE,USD90billionismobilisedassoonaspossibletocompleteaportfolio00201020202030HshipCCUSincementproductio

1179、nHdirectreducedironDirectaircaptureSolidstatebatterySolidstatecoolingLEDsWindpowerSolarPVLiionbatterySmallprotoypeLargeprototypeDemonstrationUpto2020:Remainingtimetomarket NZEYears fromprototypetomarket010303020FasthistoricalexamplesIEA. All rights reserved.186 International Energy Agency

1180、 | Special Report ofdemonstrationprojectsbefore2030:thisismuchmorethantheroughlyUSD25billionbudgeted by governments to 2030. Most of these projects are concerned with theelectrification ofenduses,CCUS,hydrogenandsustainablebioenergy, mainlyforlongdistancetransportandheavyindustrialapplications.Incre

1181、asedpublicfundinghelpstomanagetherisksofsuchfirstofakindprojectsandtoleverageprivateinvestmentinresearchanddevelopment(R&D)intheNZE.Thisrepresentsareversalofrecenttrends:governmentspendingonenergyR&Dworldwide,includingdemonstrationprojects,hasfallenasashareofGDPfromapeakofalmost0.1%in1980tojust0.03%

1182、in2019.Publicfundingalsobecomesbetteralignedwiththeinnovationsneededtoreachnetzeroemissions.IntheNZE,electrification,CCUS,hydrogenandsustainablebioenergyaccountfornearlyhalfofthecumulativeemissionsreductionsto2050.Justthreetechnologiesarecriticalinenablingaround15%ofthecumulativeemissionsreductionsi

1183、nthe NZE between 2030 and 2050: advanced highenergy density batteries, hydrogenelectrolysersandDAC.GovernmentsdriveinnovationintheNZEBringing new energy technologies to market can often take several decades, but theimperativeofreachingnetzeroemissionsgloballyby2050meansthatprogresshastobemuchfaster.

1184、Experiencehasshownthattheroleofgovernmentiscrucialinshorteningthetimeneededtobringnewtechnologytomarketandtodiffuseitwidely(IEA,2020i).Thegovernmentroleincludeseducatingpeople,fundingR&D,providingnetworksforknowledgeexchange,protectingintellectualproperty,usingpublicprocurementtoboostdeployment,help

1185、ing companies innovate, investing in enabling infrastructure and setting regulatoryframeworksformarketsandfinance.Knowledgetransferfromfirstmovercountriescanalsohelpintheaccelerationneeded,andisparticularlyimportantintheearlyphasesofadoptionwhennewtechnologiesaretypicallynotcompetitivewithincumbentt

1186、echnologies.Forexample,inthecaseofsolarPV,nationallaboratoriesplayedakeyroleintheearlydevelopmentphaseintheUnitedStates,projectssupporteddirectlybygovernmentinJapancreatedmarketnichesforinitialdeploymentandgovernmentprocurementandincentivepoliciesinGermany,Italy,Spain,UnitedStates,China, Australia a

1187、nd India fostered a global market. Lithiumion (Liion) batteries wereinitiallydevelopedthroughpublicandprivateresearchthattookplacemostlyinJapan,theirfirstenergyrelatedcommercialoperationwasmadepossibleintheUnitedStates,andmassmanufacturingtodayisprimarilyinChina.Manyofthebiggestcleanenergytechnology

1188、challengescouldbenefitfromamoretargetedapproachtospeedupprogress(DiazAnadon,2012;Mazzucato,2018).IntheNZE,concertedgovernment action leverages private sector investment and leads to advances in cleanenergytechnologiesthatarecurrentlyatdifferentstagesofdevelopment. To2030,thefocusofgovernmentactionis

1189、onbringingnewzeroorlowemissionstechnologiestomarket.Forexample,intheNZE,steelstartstobeproducedusinglowemissionshydrogenatthescaleofaconventionalsteelplant,largeshipsstarttobeChapter 4 | Wider implications of achieving net-zero emissions 187 4fuelledbylowemissionsammoniaandelectrictrucksbeginoperati

1190、ngonsolidstatebatteries.Inparallel,thereisrapidaccelerationinthedeploymentoflowemissionstechnologiesthatarealreadyavailableonthemarketbutthathavenotyetreachedmass market scale, bringing down the costs of manufacturing, construction andoperatingsuchtechnologiesduetolearningbydoingandeconomiesofscale.

1191、 From2030to2040,technologyadvancesareconsolidatedtoscaleupnascentlowemissions technologies and expand clean energy infrastructure. Clean energytechnologies that are in the laboratory or at small prototype stage today becomecommercial.Forexample,fuelsarereplacedbyelectricityincementkilnsandsteamcrack

1192、ersforhighvaluechemicalsproduction. From2040to2050,technologiesataveryearlystageofdevelopmenttodayareadoptedin promising niche markets. By 2050, clean energy technologies that are atdemonstrationorlargeprototypestagetodaybecomemainstreamforpurchasesandnew installations, and they compete with present

1193、 conventional technologies in allregions.Forexample,ultrahighenergydensitybatteriesareusedinaircraftforshortflights.4.5.5 InternationalcooperationThe pathway to netzero emissions by 2050 will require an unprecedented level ofinternationalcooperationbetweengovernments.Thisisnotonlyamatterofallcountri

1194、esparticipatingineffortstomeetthenetzerogoal,butalsoofallcountriesworkingtogetherin an effective and mutually beneficial manner. Achieving netzero emissions will beextremelychallengingforallcountries,butthechallengesaretoughestandthesolutionsleasteasytodeliverinlowerincomecountries,andtechnicalandfi

1195、nancialsupportwillbeessential to ensure the early stage deployment of key mitigation technologies andinfrastructureinmanyofthesecountries.Withoutinternationalcooperation,emissionswillnotfalltonetzeroby2050.Therearefouraspectsofinternationalcooperationthatareparticularlyimportant(Victor,GeelsandSharp

1196、e,2019). Internationaldemandsignalsandeconomiesofscale.Internationalcooperationhasbeencriticaltothecostreductionsseeninthepastformanykeyenergytechnologies.Itcanaccelerateknowledgetransferandpromoteeconomiesofscale.Itcanalsohelpalignthecreationofnewdemandforcleanenergytechnologiesandfuelsinoneregionw

1197、iththedevelopmentofsupplyinotherregions.Thesebenefitsneedtobeweighedagainst the importance of creating domestic jobs and industrial capacities, and ofensuringsupplychainresilience. Managingtradeandcompetitiveness.Industriesthatoperateinanumberofcountriesneed standardisation to ensure interoperabilit

1198、y. Progress on innovation and cleanenergytechnologydeploymentinsectorssuchasheavyindustryhasbeeninhibitedinthe past by uncoordinated national policies and a lack of internationally agreedIEA. All rights reserved.188 International Energy Agency | Special Report standards.Thedevelopmentofsuchstandards

1199、couldaccelerateenergytechnologydevelopmentanddeployment. Innovation,demonstrationanddiffusion.CleanenergyR&Dandpatentingiscurrentlyconcentratedinahandfulofplaces:UnitedStates,Europe,Japan,KoreaandChinaaccountedformorethan90%ofcleanenergypatentsin201418.Progresstowardsnetzeroemissionswouldbeincreased

1200、bymovingswiftlytoextendexperienceandknowledgeofcleanenergytechnologiesincountriesthatarenotinvolvedintheirinitialdevelopment,andbyfundingfirstofakinddemonstrationprojectsinemergingmarketanddevelopingeconomies.Internationalprogrammestofunddemonstrationprojects,especiallyinsectorswheretechnologiesarel

1201、argeandcomplex,wouldacceleratetheinnovationprocess(IEA,2020i). Carbondioxideremoval(CDR)programmes.CDRtechnologiessuchasbioenergyandDACequippedwithCCUSareessentialtoprovideemissionsreductionsatagloballevel.Internationalcooperationisneededtofundandcertifytheseprogrammes,soastomakethemostofsuitablelan

1202、d,renewableenergypotentialandstorageresources,wherevertheymaybe.Internationalemissionstradingmechanismscouldplayaroleinoffsettingemissionsinsomesectorsorareaswithnegativeemissions,thoughanysuchmechanismswouldrequireahighdegreeofcoordinationtoensuremarketfunctioningandintegrity.The NZE assumes that i

1203、nternational cooperation policies, measures and efforts areintroducedtoovercomethesehurdles.Toexplorethepotentialimplicationsofafailuretodoso,wehavedevisedaLowInternationalCooperationCase(Box4.2).Thisexamineswhatwouldhappenifnationaleffortstomitigateclimatechangerampupinlinewiththelevelofeffortinthe

1204、NZEbutcooperationframeworksarenotdevelopedatthesamespeed.Itshowsthatthelackofinternationalcooperationhasamajorimpactoninnovation,technologydemonstration,marketcoordinationandultimatelyontheemissionspathway.Box 4.2 Framing the Low International Co-operation Case TodeveloptheLowInternationalCooperatio

1205、nCase,technologiesandmitigationoptionswere assessed and grouped based on their current degree of maturity and theimportanceofinternationalcooperationtotheirdeployment.Maturetechnologiesinmarketsthatarefirmlyestablishedandthathavealowexposuretointernationalcooperation are assumed to have the same dep

1206、loyment pathways as in the NZE.Technologiesandmitigationoptionswherecooperationisneededtoachievescaleandavoidduplication,thathavealargeexposuretointernationaltradeandcompetitiveness,thatdependonlargeandverycapitalintensivedemonstrationprogrammes,orthatrequiresupporttocreatemarketpullandstandardisati

1207、ontoensureinteroperability,areassumedtobedeployedmoreslowly(MalhotraandSchmidt,2020).ComparedwiththeNZE,thesetechnologiesaredelayedby510yearsintheirinitialdeploymentinadvancedeconomiesandby1015yearsinemergingmarketanddevelopingeconomies.Chapter 4 | Wider implications of achieving net-zero emissions

1208、189 4Figure 4.24 CO2 emissions in the Low International Co-operation Case and the NZE IEA.Allrightsreserved.Without international co-operation, the transition to net zero would be delayed by decades Weak international cooperation slows the deployment of mitigation options that arecurrentlyinthedemon

1209、strationphase(Figure4.24).Thisincludesemissionsreductionsinheavyindustry,trucks,aviation,shippingandCDR.Theenergytransitionproceedsunevenlyasaresult.Overthenext20yearsintheLowInternationalCooperationCase,emissionsdeclineatarapidbutstillslowerpacethanintheNZEinelectricitygeneration,cars,lightindustry

1210、andbuildings.However,emissionsreductionsaremuchslowerinotherareas.Afterthemid2030s,thepaceofemissionsreductionsworldwideslowsmarkedlyrelativetotheNZE,andthetransitiontonetzeroisdelayedbydecades.Justover40%ofthe15GtCO2ofemissionsremainingin2050areinheavyindustry,wheretheslowerpaceofdemonstrationanddi

1211、ffusionofmitigationtechnologiesisparticularlysignificant(Figure4.25).Afurtheronethirdoftheresidualemissionsin2050arefromaviation,shippingandtrucks.Heretheslowerscaleupanddiffusionofadvancedbiofuels,hydrogenbasedfuelsandhighenergydensitybatterieshindersprogress.Theabsenceofcooperationtosupportthedepl

1212、oymentof new projects in emerging market and developing economies means that emissionsreductionstherearemuchslowerthanintheNZE.These results highlight the importance for governments of strengthening internationalcooperation.Astrongpushisneededtoaccelerateinnovationandthedemonstrationofkeytechnologie

1213、s,especiallyforcomplextechnologiesinemergingmarketanddevelopingeconomies where costs for firstofakind projects are generally higher, and to addressconcernsaboutinternationaltradeandcompetitivenesssoastoensureajusttransitionforall.02030205020702090GtCONZELowInternationalCooperationCaseIEA.

1214、 All rights reserved.190 International Energy Agency | Special Report Figure 4.25 CO2 emissions in the Low International Co-operation Case and the NZE in selected sectors in 2050 IEA.Allrightsreserved.CO2 emissions in 2050 in the Low International Co-operation Case are concentrated in the industry a

1215、nd transport sectors Note:Otherenergysector=fuelproductionanddirectaircapture.202468HeavyindustryAviationandshippingTrucksElectricitygenerationOtherenergysectorCarsLightindustryGtCOLowInternationalCooperationCaseNZEANNEXESIEA. All rights reserved.Annex A | Tables for scenario projections 193 AnnexAT

1216、ables for scenario projections GeneralnotetothetablesThisannexincludesglobalhistoricalandprojecteddatafortheNetZeroEmissionsby2050scenario for the following data sets: energy supply, energy demand, gross electricitygeneration and electrical capacity, carbon dioxide (CO2) emissions from fossil fuelco

1217、mbustionandindustrialprocesses,andselectedeconomicandactivityindicators.ThedefinitionsforfuelsandsectorsareinAnnexC.Commonabbreviationsusedinthetablesinclude:EJ=exajoules;CAAGR=compoundaverageannualgrowthrate;CCUS=carboncapture,utilisationandstorage.ConsumptionoffossilfuelsinfacilitieswithoutCCUSare

1218、classifiedas“unabated”.Bothinthetextofthisreportandinthetables,roundingmayleadtominordifferencesbetweentotalsandthesumoftheirindividualcomponents.Growthratesarecalculatedonacompoundaverageannualbasisandaremarked“n.a.”whenthebaseyeariszeroorthevalueexceeds200%.Nilvaluesaremarked“”.Todownloadthetables

1219、inExcelformatgoto:iea.li/nzedata.DatasourcesTheformalbaseyearforthescenarioprojectionsis2019,asthisisthelastyearforwhichacompletepictureofenergydemandandproductionisavailable.However,wehaveusedmorerecentdatawhenavailable,andweincludeour2020estimatesforenergyproductionanddemandinthisannex.Estimatesfo

1220、rtheyear2020arebasedonupdatesoftheIEAsGlobalEnergyReviewreportswhicharederivedfromanumberofsources,includingthelatestmonthlydatasubmissionstotheIEAsEnergyDataCentre,otherstatisticalreleasesfromnationaladministrations,andrecentmarketdatafromtheIEAMarketReportSeriesthatcovercoal,oil,naturalgas,renewab

1221、lesandpower.Historical data for gross electrical capacity are drawn from the S&P Global MarketIntelligence World Electric Power Plants Database (March 2020 version) and theInternationalAtomicEnergyAgencyPRISdatabase.Definitionalnote:A.1.EnergysupplyandtransformationtableTotalenergysupply(TES)isequiv

1222、alenttoelectricityandheatgenerationplus“otherenergysector”excludingelectricityandheat,plustotalfinalconsumption(TFC)excludingelectricityandheat.TESdoesnotincludeambientheatfromheatpumpsorelectricitytrade.SolarinTESincludessolarPVgeneration,concentratingsolarpowerandfinalconsumptionofsolarthermal.Oth

1223、errenewablesinTESincludegeothermal,andmarine(tideandwave)energyforelectricityandheatgeneration.Hydrogenproductionandbiofuelsproductionintheotherenergysectoraccountfortheenergyinputrequiredtoproducemerchanthydrogen(mainlynaturalgasandelectricity)andfortheconversionlossestoproducebiofuels(mainlyprimar

1224、y solid biomass) used in the energy sector. While not itemised separately, nonrenewablewasteandothersourcesareincludedinTES.IEA. All rights reserved.194 International Energy Agency | Special Report Definitionalnote:A.2.EnergydemandtableSectorscomprisingtotalfinalconsumption(TFC)includeindustry(energ

1225、yuseandfeedstock),transport,buildings(residential,servicesandnonspecifiedother)andother(agricultureandothernonenergyuse).Energydemandfrominternationalmarineandaviationbunkersareincludedintransporttotals.Definitionalnote:A.3.ElectricitytablesElectricitygenerationexpressedinterawatthours(TWh)andinstal

1226、ledelectricalcapacitydataexpressedingigawatts(GW)arebothprovidedonagrossbasis(i.e.includesownusebythegenerator).Projectedgrosselectricalcapacityisthesumofexistingcapacityandadditions,lessretirements.Whilenotitemisedseparately,othersourcesareincludedintotalelectricitygeneration.Definitionalnote:A.4.C

1227、O2emissionstableTotal CO2 includes carbon dioxide emissions from the combustion of fossil fuels andnonrenewable wastes, from industrial and fuel transformation processes (processemissions)aswellasCO2removals.ThreetypesofCO2removalsarepresented: Captured and stored emissions from the combustion of bi

1228、oenergy and renewablewastes(typicallyelectricitygeneration). Capturedandstoredprocessemissionsfrombiofuelsproduction. Capturedandstoredcarbondioxidefromtheatmosphere,whichisreportedasdirectaircarboncaptureandstorage(DACCS).Thefirsttwoentriesareoftenreportedasbioenergywithcarboncaptureandstorage(BECC

1229、S).NotethatsomeoftheCO2capturedfrombiofuelsproductionanddirectaircaptureisusedtoproducesyntheticfuels,whichisnotincludedasCO2removal.Total CO2 captured includes the carbon dioxide captured from CCUS facilities (such aselectricitygenerationorindustry)andatmosphericCO2capturedthroughdirectaircapturebu

1230、texcludesthatcapturedandusedforureaproduction.Definitionalnote:A.5.EconomicandactivityindicatorsThe emission intensity expressed in kilogrammes of carbon dioxide per kilowatthour(kgCO2/kWh)iscalculatedbasedonelectricityonlyplantsandtheelectricitycomponentofcombinedheatandpower(CHP)plants.1Other abbr

1231、eviations used include: PPP = purchasing power parity; GJ = gigajoules;Mt=milliontonnes;pkm=passengerkilometres;tkm=tonneskilometres;m2=squaremetres.1ToderivetheassociatedelectricityonlyemissionsfromCHPplants,weassumethattheheatproductionofaCHPplantis90%efficientandtheremainderofthefuelinputisalloca

1232、tedtoelectricitygeneration.Table A.1: Energy supply and transformationEnergysupply(EJ)Shares(%)CAAGR(%)2004020502020203020502020203020202050Totalenergysupply65431001001000.70.3Renewables676930679.35.7Solar453278Wind562967891516179.6Hydro462.92.2

1233、Modernsolidbioenergy30145.32.8Modernliquidbioenergy434.9Moderngaseousbioenergy2251014013106.4Otherrenewables456.7Traditionaluseofbiomass25254n.a.n.a.Nuclear302941546158113.52.4Unabatednaturalgas17232131.66.6NaturalgaswithCCUS0716Oil42

1234、292582.34.6ofwhichnonenergyuse28273231295651.40.2Unabatedcoal261217.912CoalwithCCUS004Electricityandheatsectors23323024030837.41.6Renewables36384477116.9SolarPV232562Wind5629678921224179.6Hydro982.92.2Bioenergy906.34.6Other

1235、renewables4448.5Hydrogen5111123n.a.n.a.Ammonia12200n.a.n.a.Nuclear302943.52.4Unabatednaturalgas56554942242101.111NaturalgaswithCCUS15511n.a.n.a.Oil982004101214Unabatedcoal31201134CoalwithCCUS0031070125519Otherenergysector575761000.71.5Hydrogenproduction021

1236、4970035776623Biofuelsproduction56382.7Annex A | Tables for scenario projections195AIEA. All rights reserved.Table A.2: Energy demandEnergydemand(EJ)Shares(%)CAAGR(%)2004020502020203020502020203020202050Totalfinalconsumption43541001001000.40.6Electricity828

1237、026492.42.5Liquidfuels663836191.02.9Biofuels434.9Ammonia13501n.a.n.a.Syntheticoil02501n.a.n.a.Oil423733121.84.2Gaseousfuels70686860531617150.10.8Biomethane002580122513Hydrogen006Syntheticmethane01401n.a.n.a.Naturalgas7067584020161561.44.0Solidfuels92896146

1238、352216103.63.0Biomass39392425259674.81.4Coal5350382110121032.85.3Heat1.22.7Other33711151248.25.2Industry900.80.1Electricity35354762742228463.02.5Liquidfuels318150.20.9Oil318150.20.9Gaseousfuels32323534282021181.00.4Biomethane001240032215Hydrogen

1239、03450234415Unabatednaturalgas323230229201860.54.0NaturalgaswithCCUS001570143818Solidfuels585250.31.9Biomass135.22.8Unabatedcoal484435153282022.39.0CoalwithCCUS001570149131Heat666324311.24.5Other001340123314Ironandsteel36333736322122201.10.2Chemicals22202626251315152.70.7Cement1

1240、273.31.3International Energy Agency | Special Report196Table A.2: Energy demandEnergydemand(EJ)Shares(%)CAAGR(%)2004020502020203020502020203020202050Transport801001001000.30.9Electricity1711Liquidfuels9487381.03.9Biofuels43155.6Oil111

1241、96763599174122.27.4Gaseousfuels556101556182.13.7Biomethane001120022311Hydrogen004Naturalgas554205401.511Road908630.91.6Passengercars474213.12.9Trucks27252824222427281.10.4Aviation3184.61.7Shipping011120.40.3Buildings61001001002.41.3El

1242、ectricity43424551573346660.71.0Liquidfuels23.26.0Biofuels000110012612Oil3.47.7Gaseousfuels302823136222372.14.9Biomethane001220122911Hydrogen022202210327Naturalgas30281971222013.812Solidfuels34345.5Modernbiomass559764976.90.9Traditionaluseofbiomass252520n.a.n.a.Coal44

1243、1003101221Heat776545651.21.6Other23581125127.14.8Residential967673.01.5Services38363230282933331.20.9Other222322200.50.9Annex A | Tables for scenario projections197AIEA. All rights reserved.Table A.3: ElectricityElectricityGeneration(TWh)Shares(%)CAAGR(%)200402050202

1244、0203020502020203020202050Totalgeneration269222677837341001001003.43.3Renewables7747528127.2SolarPV665823469319332412Wind82135189.6Hydro4294444611716122.92.2Bioenergy66572793457.05.2ofwhichBECCSn.a.n.a.

1245、CSP3860123117Geothermal9294330625821011137.5Marine02814Nuclear27922698377748555497101083.42.4Hydrogenbased8751857171322n.a.n.a.FossilfuelswithCCUS320126121CoalwithCCUS0115419NaturalgaswithCCUSn.a.n.a.Unabatedfossilfuels358632259612505

1246、.413Coal9832942629470035801140Naturalgas6326253231700.010Oil7957565ElectricalCapacity(GW)Shares(%)CAAGR(%)2004020502020203020502020203020202050Totalcapacity74847795346.75.0Renewables270729946568386980137.5SolarPV60373749563

1247、3432110Wind623737392125158.4Hydro422822599171283.12.3Bioenergy46402225.74.5ofwhichBECCS2812515200n.a.n.a.CSP667328Geothermal000137.4Marine3416Nuclear48125322.22.3Hydrogenbased16n.a.n.a.FossilfuelswithCCUS01813123

1248、940116625CoalwithCCUS015922NaturalgaswithCCUS2813017101n.a.n.a.Unabatedfossilfuels43551677562222.76.0Coal243215827805.68.3Naturalgas0679495231310.64.3Oil440422.39.0Batterystorage30970494219International Energy Agency | Special Report1

1249、98Table A.4: CO2 emissionsACAAGR(%)2004020502020203020202050TotalCO2*359263390321147631604.655.4Combustionactivities(+)334993309404.811Coal91512991958.313Oil42633299283.27.7Naturalgas725975661.88.1Bioenergyandwaste757148528748n.a.n.a.Industryrem

1250、ovals()67528Biofuelsproduction6824Directaircapture71528633n.a.n.a.Electricityandheatsectors816813698.1n.a.Coal50102691115Oil655628173661214Naturalgas32681281.010Bioenergyandwaste87457572n.a.n.a.Otherenergysector*853687.4n.a.Finalconsu

1251、mption*2064701113702.58.4Coal448641173.511Oil7332428802.67.5Naturalgas345533032.27.7Bioenergyandwaste757140701765.6n.a.Industry*89038478689234855192.08.9Ironandsteel25072349.77.6Chemicals9654660.89.5Cement24661332.09.1Trans

1252、port829076892.27.5Road617933402.98.9Passengercars3547855.111Trucks48901980.66.9Aviation692102.43.5Shipping8838007053481221.36.1Buildings30072860.510Residential20301083.59.2Services977892432144147.013TotalCO2removals11317145

1253、719367929TotalCO2captured404024519*Includesindustrialprocessemissions.CO2emissions(MtCO2)199Annex A | Tables for scenario projectionsIEA. All rights reserved.Table A.5: Economic and Activity IndicatorsInternational Energy Agency | Special Report200IndicatorCAAGR(%)2004020502020

1254、203020202050Population(million)767277538505915596920.90.7GDP(USD2019billion,PPP)134 710128 276184 03746 9602316 411 3.73.26482.72.34.5434.5782.9732.1641.7164.23.2GDPpercapita(USD2019,PPP)TES/GDP(GJperUSD1000,PPP)TFC/GDP(GJperUSD1000,PPP)3.2313.2082.1391.4681.0864.03.5TESpercapi

1255、ta(GJ)79.7775.7464.3358.3856.031.61.0CO2intensityofelectricitygeneration(kgCO2perkWh)0.4680.4380.1380.0010.00511n.a.ActivityCAAGR(%)2004020502020203020202050Industrialproduction5385296416866881.90.97195819870.80.4Primarychemicals(Mt)Steel(Mt)Cement(Mt)4212940320.50.0

1256、Transport5775.01.8266462576599904.02.98045.9Passengercars(billionpkm)Trucks(billiontkm)Aviation*(billionpkm)Shipping(billiontkm)352910323.63.3Buildings49670498255886768576781571.71.582357452906963451832.02.0Servi

1257、cesfloorarea(millionm2)Residentialfloorarea(millionm2)Millionhouseholds2095230511.41.2*Aviationpassengerkilometrereferstocommercialpassengeraviationandexcludesactivityondedicatedcargofreightandmilitaryaviation.Annex B | Technology costs 201 AnnexBTechnology costs ElectricitygenerationTabl

1258、e B.1 Electricity generation technology costs by selected region in the NZE Financingrate(%)Capitalcosts($/kW)Capacityfactor(%)Fuel,CO2andO&M($/MWh)LCOE($/MWh)All2020203020502020 2030 2050 2020 2030 2050 2020 2030 2050UnitedStatesNuclear8.0500048004500908075303030105110110Coal8.0220 n.a.

1259、n.a.90170 235220 n.a. n.a.GasCCGT8.005525 n.a.5080 10570125 n.a.SolarPV3.7503020Windonshore3.704243440Windoffshore4.540402080520151156040EuropeanUnionNuclear8.06600570353535150120115Coal8.020002000200020 n.a. n.a.120205 275

1260、250 n.a. n.a.GasCCGT8.004020 n.a.6595 120100150 n.a.SolarPV3.27904603400553525Windonshore3.202930340Windoffshore4.0360020205105754025ChinaNuclear7.0280028002500808080252525656560Coal7.080080080060 n.a. n.a.75135 19590 n.a. n.a.GasCCGT7.056056056

1261、04535 n.a.75100 12090115 n.a.SolarPV3.575040028002515Windonshore3.502627270Windoffshore4.328404530IndiaNuclear7.0280028002800707070303030757575Coal7.0050 n.a. n.a.35507565 n.a. n.a.GasCCGT7.07007007005550 n.a.4545505560 n.a.SolarPV5.8

1262、5803555352015Windonshore5.8628290Windoffshore6.6298073825Notes:O&M=operationandmaintenance;LCOE=levelisedcostofelectricity;kW= kilowatt;MWh=megawatthour;CCGT=combinedcyclegasturbine;n.a.=notapplicable.CostcomponentsandLCOEfiguresarerounded.Sourc

1263、es:IEAanalysis;IRENARenewableCostingAlliance;IRENA(2020).IEA. All rights reserved.202 International Energy Agency | Special Report MajorcontributorstotheLCOEinclude:overnightcapitalcosts;capacityfactorthatdescribestheaverageoutputovertheyearrelativetothemaximumratedcapacity(typicalvaluesprovided);th

1264、e costoffuelinputs;plusoperationandmaintenance.Economiclifetimeassumptionsare25yearsforsolarPV,onshoreandoffshorewind. Weightedaveragecostsofcapital(WACC)reflectanalysisforutilityscalesolarPVintheWorldEnergyOutlook2020(IEA,2020)andforoffshorewindfromtheOffshoreWindOutlook2019(IEA,2019).Onshorewindwa

1265、sassumedtohavethesameWACCasutilityscalesolarPV.AstandardWACCwasassumedfornuclearpower,coalandgasfiredpowerplants(78%basedonthestageofeconomicdevelopment). Fuel,CO2andO&Mcostsreflecttheaverageoverthetenyearsfollowingtheindicateddateintheprojections. Thecapitalcostsfornuclearpowerrepresentthe“nthofaki

1266、nd”costsfornewreactordesigns,withsubstantialcostreductionsfromthefirstofakindprojects.BatteriesandhydrogenTable B.2 Capital costs for batteries and hydrogen production technologies in the NZE 202020302050Batterypacksfortransportapplications(USD/kWh)580Lowtemperatureelectrolysers(USD/kWe)8

1267、3500390NaturalgaswithCCUS(USD/kWH2)Notes:kWh=kilowatthour;kWe=kilowattelectric;CCUS=carboncapture,utilisationandstorage;H2=hydrogen.CapitalcostsforelectrolysersandhydrogenproductionfromnaturalgaswithCCUSareovernightcosts.Source:IEAanalysis.Annex C | Definitions 203 A

1268、nnexCDefinitions This annex provides general information on terminology used throughout this reportincluding:unitsandgeneralconversionfactors;definitionsoffuels,processesandsectors;regionalandcountrygroupings;andabbreviationsandacronyms.UnitsAreakm2squarekilometreMhamillionhectaresBatteriesWh/kgWatt

1269、hoursperkilogrammeCoalMtcemilliontonnesofcoalequivalent(equals0.7Mtoe)DistancekmkilometreEmissionsppmpartspermillion(byvolume)tCO2tonnesofcarbondioxideGtCO2eqgigatonnesofcarbondioxideequivalent(using100yearglobalwarmingpotentialsfordifferentgreenhousegases)kgCO2eqkilogrammesofcarbondioxideequivalent

1270、gCO2/kmgrammesofcarbondioxideperkilometrekgCO2/kWhkilogrammesofcarbondioxideperkilowatthourEnergyEJexajoulePJpetajouleTJterajouleGJgigajouleMJmegajouleboebarrelofoilequivalenttoetonneofoilequivalentktoethousandtonnesofoilequivalentMtoemilliontonnesofoilequivalentMBtumillionBritishthermalunitskWhkilo

1271、watthourMWhmegawatthourGWhgigawatthourTWhterawatthourGasbcmbillioncubicmetrestcmtrillioncubicmetresMasskgkilogramme(1000kg=1tonne)ktkilotonnes(1tonnex103)Mtmilliontonnes(1tonnex106)Gtgigatonnes(1tonnex109)IEA. All rights reserved.204 International Energy Agency | Special Report MonetaryUSDmillion1US

1272、dollarx106USDbillion1USdollarx109USDtrillion1USdollarx1012USD/tCO2USdollarspertonneofcarbondioxideOilkb/dthousandbarrelsperdaymb/dmillionbarrelsperdaymboe/dmillionbarrelsofoilequivalentperdayPowerWwatt(1joulepersecond)kWkilowatt(1wattx103)MWmegawatt(1wattx106)GWgigawatt(1wattx109)TWterawatt(1wattx10

1273、12)GeneralconversionfactorsforenergyMultipliertoconvertto:EJGcalMtoeMBtuGWhConvertfrom:EJ1238.8x10623.889.47.8x1032.778x105Gcal4.1868x10911073.9681.163x103Mtoe4.1868x10210713.968x10711630MBtu1.0551x1090.2522.52x10812.931x104GWh3.6x1068608.6x10534121Note:Thereisnogenerallyaccepteddefinitionofboe;typi

1274、callytheconversionfactorsusedvaryfrom7.15to7.40boepertoe.CurrencyconversionsExchangerates(2019annualaverage)1USdollar(USD)equals:BritishPound0.78ChineseYuanRenminbi6.91Euro0.89IndianRupee70.42IndonesianRupiah14147.67JapaneseYen109.01RussianRuble64.74SouthAfricanRand14.45Source:OECDNationalAccountsSt

1275、atistics:purchasingpowerparitiesandexchangeratesdataset,July2020.Annex C | Definitions 205 CDefinitionsAdvancedbioenergy:Sustainablefuelsproducedfromnonfoodcropfeedstocks,whicharecapableofdeliveringsignificantlifecyclegreenhousegasemissionssavingscomparedwithfossilfuelalternatives,andwhichdonotdirec

1276、tlycompetewithfoodandfeedcropsforagriculturallandorcauseadversesustainabilityimpacts.Thisdefinitiondiffersfromtheoneusedfor“advancedbiofuels”inUSlegislation,whichisbasedonaminimum50%lifecyclegreenhousegasreductionandwhich,therefore,includessugarcaneethanol.Agriculture:Includesallenergyusedonfarms,in

1277、forestryandforfishing.Agriculture, forestry and other land use (AFOLU) emissions: Includes greenhouse gasemissionsfromagriculture,forestryandotherlanduse.Ammonia(NH3):Isacompoundofnitrogenandhydrogen.Itcanbeuseddirectlyasafuelindirectcombustionprocess,andinfuelcellsorasahydrogencarrier.Tobealowcarbo

1278、nfuel,ammoniamustbeproducedfromlowcarbonhydrogen,thenitrogenseparatedviatheHaberprocess,andelectricityneedsaremetbylowcarbonelectricity.Aviation:Thistransportmodeincludesbothdomesticandinternationalflightsandtheiruseofaviationfuels.Domesticaviationcoversflightsthatdepartandlandinthesamecountry;fligh

1279、tsformilitarypurposesarealsoincluded.Internationalaviationincludesflightsthatlandinacountryotherthanthedeparturelocation.Backupgenerationcapacity:Householdsandbusinessesconnectedtoamainpowergridmayalsohavebackupelectricitygenerationcapacitythat,intheeventofdisruption,canprovide electricity. Backup g

1280、enerators are typically fuelled with diesel or gasoline andcapacitycanbeaslittleasafewkilowatts.Suchcapacityisdistinctfromminigridandoffgridsystemsthatarenotconnectedtoamainpowergrid.Biodiesel:Dieselequivalent,processedfuelmadefromthetransesterification(achemicalprocessthatconvertstriglyceridesinoil

1281、s)ofvegetableoilsandanimalfats.Bioenergy: Energy content in solid, liquid and gaseous products derived from biomassfeedstocksandbiogas.Itincludessolidbiomass,liquidbiofuelsandbiogases.Biogas:Amixtureofmethane,carbondioxideandsmallquantitiesofothergasesproducedbyanaerobicdigestionoforganicmatterinano

1282、xygenfreeenvironment.Biogases:Includebiogasandbiomethane.Biomethane:Biomethaneisanearpuresourceofmethaneproducedeitherbyupgradingbiogas(aprocessthatremovesanyCO2andothercontaminantspresentinthebiogas)orthroughthegasificationofsolidbiomassfollowedbymethanation.Itisalsoknownasrenewablenaturalgas.Build

1283、ings: The buildings sector includes energy used in residential, commercial andinstitutionalbuildingsandnonspecifiedother.Buildingenergyuseincludesspaceheatingandcooling,waterheating,lighting,appliancesandcookingequipment.IEA. All rights reserved.206 International Energy Agency | Special Report Bunke

1284、rs:Includesbothinternationalmarinebunkersandinternationalaviationbunkers.Capacity credit: Proportion of the capacity that can be reliably expected to generateelectricityduringtimesofpeakdemandinthegridtowhichitisconnected.Carboncapture,utilisationandstorage(CCUS):TheprocessofcapturingCO2emissionsfro

1285、mfuel combustion, industrial processes or directly from the atmosphere. Captured CO2emissionscanbestoredinundergroundgeologicalformations,onshoreoroffshoreorusedasaninputorfeedstocktocreateproducts.Clean energy: Includes renewables, energy efficiency, lowcarbon fuels, nuclear power,batterystorageand

1286、carboncapture,utilisationandstorage.Cleancookingfacilities:Cookingfacilitiesthatareconsideredsafer,moreefficientandmoreenvironmentallysustainablethanthetraditionalfacilitiesthatmakeuseofsolidbiomass(suchasathreestonefire).Thisrefersprimarilytoimprovedsolidbiomasscookstoves,biogassystems,liquefiedpet

1287、roleumgasstoves,ethanolandsolarstoves.Coal:Includesbothprimarycoal(includinglignite,cokingandsteamcoal)andderivedfuels(includingpatentfuel,browncoalbriquettes,cokeovencoke,gascoke,gasworksgas,cokeovengas,blastfurnacegasandoxygensteelfurnacegas).Peatisalsoincluded.Concentratingsolarpower(CSP):Solarth

1288、ermalpower/electricgenerationsystemsthatcollectandconcentratesunlighttoproducehightemperatureheattogenerateelectricity.Conventional liquid biofuels: Fuels produced from food crop feedstocks. These liquidbiofuelsarecommonlyreferredtoasfirstgenerationandincludesugarcaneethanol,starchbasedethanol,fatty

1289、acidmethylesther(FAME)andstraightvegetableoil(SVO).Decompositionanalysis:Statisticalapproachthatdecomposesanaggregateindicatortoquantifytherelativecontributionofasetofpredefinedfactorsleadingtoachangeintheaggregate indicator. This report uses an additive index decomposition of the typeLogarithmicMea

1290、nDivisiaIndex(LMDI).Demandsideintegration(DSI):Consistsoftwotypesofmeasures:actionsthatinfluenceloadshapesuchasenergyefficiencyandelectrification;andactionsthatmanageloadsuchasdemandsideresponse.Demandsideresponse(DSR):Describesactionswhichcaninfluencetheloadprofilesuchasshifting the load curve in t

1291、ime without affecting the total electricity demand, or loadshedding such as interrupting demand for short duration or adjusting the intensity ofdemandforacertainamountoftime.Dispatchable generation: Refers to technologies whose power output can be readilycontrolledincreasedtomaximumratedcapacityorde

1292、creasedtozeroinordertomatchsupplywithdemand.Electricitydemand:Definedastotalgrosselectricitygenerationlessownusegeneration,plusnettrade(importslessexports),lesstransmissionsanddistributionlosses.Annex C | Definitions 207 CElectricitygeneration:Definedasthetotalamountofelectricitygeneratedbypoweronly

1293、orcombinedheatandpowerplantsincludinggenerationrequiredforownuse.Thisisalsoreferredtoasgrossgeneration.EnergysectorCO2emissions:Carbondioxideemissionsfromfuelcombustion(excludingnonrenewablewaste).Notethatthisdoesnotincludefugitiveemissionsfromfuels,CO2fromtransport,storageemissionsorindustrialproce

1294、ssemissions.EnergysectorGHGemissions:CO2emissionsfromfuelcombustionplusfugitiveandventedmethane,andnitrousdioxide(N2O)emissionsfromtheenergyandindustrysectors.Energyservices:Seeusefulenergy.Ethanol:Referstobioethanolonly.Ethanolisproducedfromfermentinganybiomasshighincarbohydrates.Today,ethanolismad

1295、efromstarchesandsugars,butsecondgenerationtechnologieswillallowittobemadefromcelluloseandhemicellulose,thefibrousmaterialthatmakesupthebulkofmostplantmatter.FischerTropschsynthesis:Catalyticproductionprocessfortheproductionofsyntheticfuels.Naturalgas,coalandbiomassfeedstockscanbeused.Gases:Includesn

1296、aturalgas,biogases,syntheticmethaneandhydrogen.Geothermal:Geothermalenergyisheatderivedfromthesubsurfaceoftheearth.Waterand/orsteamcarrythegeothermalenergytothesurface.Dependingonitscharacteristics,geothermal energy can be used for heating and cooling purposes or be harnessed togeneratecleanelectric

1297、ityifthetemperatureisadequate.Heat(enduse):Canbeobtainedfromthecombustionoffossilorrenewablefuels,directgeothermalorsolarheatsystems,exothermicchemicalprocessesandelectricity(throughresistanceheatingorheatpumpswhichcanextractitfromambientairandliquids).Thiscategoryreferstothewiderangeofenduses,inclu

1298、dingspaceandwaterheating,andcookinginbuildings,desalinationandprocessapplicationsinindustry.Itdoesnotincludecoolingapplications.Heat (supply): Obtained from the combustion of fuels, nuclear reactors, geothermalresourcesandthecaptureofsunlight.Itmaybeusedforheatingorcooling,orconvertedinto mechanical

1299、 energy for transport or electricity generation. Commercial heat sold isreportedundertotalfinalconsumptionwiththefuelinputsallocatedunderelectricityandheatsectors.Hydrogen:Hydrogenisusedintheenergysystemtorefinehydrocarbonfuelsandasanenergycarrierinitsownright.Itisalsoproducedfromotherenergyproducts

1300、foruseinchemicalsproduction.Asanenergycarrieritcanbeproducedfromhydrocarbonfuelsorfromtheelectrolysisofwaterwithelectricity,andcanbeburnedorusedinfuelcellsforelectricityandheatinawidevarietyofapplications.Tobelowcarbonhydrogen,eithertheemissionsassociatedwithfossilbasedhydrogenproductionmustbepreven

1301、ted(forexamplebycarboncapture,utilisationandstorage)ortheelectricityinputtohydrogenproducedfromwatermustbelowcarbonelectricity.Inthisreport,finalconsumptionofhydrogenIEA. All rights reserved.208 International Energy Agency | Special Report includesdemandforpurehydrogenandexcludeshydrogenproducedandc

1302、onsumedonsiteby the same entity. Demand for hydrogenbased fuels such as ammonia or synthetichydrocarbonsareconsideredseparately.Hydrogenbasedfuels:Includeammoniaandsynthetichydrocarbons(gasesandliquids).Hydrogenbasedisusedinfigurestorefertohydrogenandhydrogenbasedfuels.Hydropower:Theenergycontentoft

1303、heelectricityproducedinhydropowerplants,assuming100%efficiency.Itexcludesoutputfrompumpedstorageandmarine(tideandwave)plants.Industry:Thesectorincludesfuelusedwithinthemanufacturingandconstructionindustries.Keyindustrybranchesincludeironandsteel,chemicalsandpetrochemicals,cement,andpulpandpaper.Useb

1304、yindustriesforthetransformationofenergyintoanotherformorfortheproductionoffuelsisexcludedandreportedseparatelyunderotherenergysector.Consumptionoffuelsforthetransportofgoodsisreportedaspartofthetransportsector,whileconsumptionbyoffroadvehiclesisreportedunderindustry.International aviation bunkers: I

1305、ncludes the deliveries of aviation fuels to aircraft forinternational aviation. Fuels used by airlines for their road vehicles are excluded. Thedomestic/internationalsplitisdeterminedonthebasisofdepartureandlandinglocationsandnotbythenationalityoftheairline.Formanycountriesthisincorrectlyexcludesfue

1306、lsusedbydomesticallyownedcarriersfortheirinternationaldepartures.Internationalmarinebunkers:Coversfuelsdeliveredtoshipsofallflagsthatareengagedininternationalnavigation.Theinternationalnavigationmaytakeplaceatsea,oninlandlakesandwaterways,andincoastalwaters.Consumptionbyshipsengagedindomesticnavigat

1307、ionisexcluded.Thedomestic/internationalsplitisdeterminedonthebasisofportofdepartureandportofarrival,andnotbytheflagornationalityoftheship.Consumptionbyfishingvesselsandbymilitaryforcesisexcludedandincludedinresidential,servicesandagriculture.Investment:Allinvestmentdataandprojectionsreflectspendinga

1308、crossthelifecycleofaproject,i.e.thecapitalspentisassignedtotheyearwhenitisincurred.Investmentsforoil,gasandcoalincludeproduction,transformationandtransportation;thoseforthepowersector include refurbishments, uprates, new builds and replacements for all fuels andtechnologies for ongrid, minigrid and

1309、offgrid generation, as well as investment intransmissionanddistribution,andbatterystorage.Investmentdataarepresentedinrealtermsinyear2019USdollarsunlessotherwisestated.Lightdutyvehicles(LDV):includepassengercarsandlightcommercialvehicles(grossvehicleweight15tonnes).Usefulenergy:Referstotheenergythat

1310、isavailabletoenduserstosatisfytheirneeds.Thisisalsoreferredtoasenergyservicesdemand.Asresultoftransformationlossesatthepointofuse,theamountofusefulenergyislowerthanthecorrespondingfinalenergydemandformosttechnologies.Equipmentusingelectricityoftenhashigherconversionefficiencythanequipmentusingotherf

1311、uels,meaningthatforaunitofenergyconsumedelectricitycanprovidemoreenergyservices.Wind:electricityproducedbywindturbinesfromthekineticenergyofwind.Woodyenergycrops:Shortrotationplantingsofwoodybiomassforbioenergyproduction,suchascoppicedwillowandmiscanthus.Variablerenewableenergy(VRE):Referstotechnolo

1312、gieswhosemaximumoutputatanytimedependsontheavailabilityoffluctuatingrenewableenergyresources.VREincludesabroadarrayoftechnologiessuchaswindpower,solarPV,runofriverhydro,concentratingsolarpower(wherenothermalstorageisincluded)andmarine(tidalandwave).Zerocarbonreadybuildings:Azerocarbonreadybuildingis

1313、highlyenergyefficientandeitherusesrenewableenergydirectly,oranenergysupplythatcanbefullydecarbonised,suchaselectricityordistrictheat.Zeroemissionsvehicles(ZEVs):VehicleswhicharecapableofoperatingwithouttailpipeCO2emissions(batteryelectricvehiclesandfuelcellvehicles).RegionalandcountrygroupingsAdvanc

1314、edeconomies:OECDregionalgroupingandBulgaria,Croatia,Cyprus1,2,MaltaandRomania.Africa:NorthAfricaandsubSaharanAfricaregionalgroupings.AsiaPacific:SoutheastAsiaregionalgroupingandAustralia,Bangladesh,China,India,Japan,Korea,DemocraticPeoplesRepublicofKorea,Mongolia,Nepal,NewZealand,Pakistan,SriLanka,C

1315、hineseTaipei,andotherAsiaPacificcountriesandterritories.3Caspian:Armenia,Azerbaijan,Georgia,Kazakhstan,Kyrgyzstan,Tajikistan,TurkmenistanandUzbekistan.CentralandSouthAmerica:Argentina,PlurinationalStateofBolivia(Bolivia),Brazil,Chile,Colombia,CostaRica,Cuba,Curaao,DominicanRepublic,Ecuador,ElSalvado

1316、r,Guatemala,Haiti, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad andTobago,Uruguay,BolivarianRepublicofVenezuela(Venezuela),andotherCentralandSouthAmericancountriesandterritories.4China:Includesthe(PeoplesRepublicof)ChinaandHongKong,China.Annex C | Definitions 213 CFigure

1317、C.1 Main country groupings Note:Thismapiswithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Developing Asia: Asia Pacific regional grouping excluding Australia, Japan, Korea andNewZealand.Emerging mar

1318、ket and developing economies: All other countries not included in theadvancedeconomiesregionalgrouping.Eurasia:CaspianregionalgroupingandtheRussianFederation(Russia).Europe:EuropeanUnionregionalgroupingandAlbania,Belarus,BosniaandHerzegovina,North Macedonia, Gibraltar, Iceland, Israel5, Kosovo, Mont

1319、enegro, Norway, Serbia,Switzerland,RepublicofMoldova,Turkey,UkraineandUnitedKingdom.EuropeanUnion:Austria,Belgium,Bulgaria,Croatia,Cyprus1,2,CzechRepublic,Denmark,Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,Luxembourg, Malta, Netherlands, Poland, Portugal, R

1320、omania, Slovak Republic, Slovenia,SpainandSweden.IEA (International Energy Agency): OECD regional grouping excluding Chile, Colombia,Iceland,Israel,Latvia,LithuaniaandSlovenia.LatinAmerica:CentralandSouthAmericaregionalgroupingandMexico.MiddleEast:Bahrain,IslamicRepublicofIran(Iran),Iraq,Jordan,Kuwa

1321、it,Lebanon,Oman,Qatar,SaudiArabia,SyrianArabRepublic(Syria),UnitedArabEmiratesandYemen.NonOECD:AllothercountriesnotincludedintheOECDregionalgrouping.NonOPEC:AllothercountriesnotincludedintheOPECregionalgrouping.IEA. All rights reserved.214 International Energy Agency | Special Report NorthAfrica:Alg

1322、eria,Egypt,Libya,MoroccoandTunisia.NorthAmerica:Canada,MexicoandUnitedStates.OECD (Organisation for Economic Cooperation and Development): Australia, Austria,Belgium, Canada, Chile, Colombia, Czech Republic, Denmark, Estonia, Finland, France,Germany,Greece,Hungary,Iceland,Ireland,Israel,Italy,Japan,

1323、Korea,Latvia,Lithuania,Luxembourg,Mexico,Netherlands,NewZealand,Norway,Poland,Portugal,SlovakRepublic,Slovenia,Spain,Sweden,Switzerland,Turkey,UnitedKingdomandUnitedStates.OPEC(OrganisationofthePetroleumExportingCountries):Algeria,Angola,RepublicoftheCongo(Congo),EquatorialGuinea,Gabon,theIslamicRep

1324、ublicofIran(Iran),Iraq,Kuwait,Libya,Nigeria,SaudiArabia,UnitedArabEmiratesandBolivarianRepublicofVenezuela(Venezuela).SoutheastAsia:BruneiDarussalam,Cambodia,Indonesia,LaoPeoplesDemocraticRepublic(Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand and VietNam. Thesecountriesareallmemberso

1325、ftheAssociationofSoutheastAsianNations(ASEAN).SubSaharanAfrica:Angola,Benin,Botswana,Cameroon,RepublicoftheCongo(Congo),CtedIvoire,DemocraticRepublicoftheCongo,Eritrea,Ethiopia,Gabon,Ghana,Kenya,Mauritius,Mozambique,Namibia,Niger,Nigeria,Senegal,SouthAfrica,SouthSudan,Sudan,UnitedRepublicofTanzania(

1326、Tanzania),Togo,Zambia,ZimbabweandotherAfricancountriesandterritories.6Countrynotes1NotebyTurkey:Theinformationinthisdocumentwithreferenceto“Cyprus”relatestothesouthernpartoftheisland.ThereisnosingleauthorityrepresentingbothTurkishandGreekCypriotpeopleontheisland.TurkeyrecognisestheTurkishRepublicofN

1327、orthernCyprus(TRNC).UntilalastingandequitablesolutionisfoundwithinthecontextoftheUnitedNations,Turkeyshallpreserveitspositionconcerningthe“Cyprusissue”.2NotebyalltheEuropeanUnionMemberStatesoftheOECDandtheEuropeanUnion:TheRepublicofCyprusisrecognisedbyallmembersoftheUnitedNationswiththeexceptionofTu

1328、rkey.TheinformationinthisdocumentrelatestotheareaundertheeffectivecontroloftheGovernmentoftheRepublicofCyprus.3Individualdataarenotavailableandareestimatedinaggregatefor:Afghanistan,Bhutan,CookIslands,Fiji,French Polynesia, Kiribati, Macau (China), Maldives, New Caledonia, Palau, Papua New Guinea, S

1329、amoa,SolomonIslands,TimorLesteandTongaandVanuatu.4Individualdataarenotavailableandareestimatedinaggregatefor:Anguilla,AntiguaandBarbuda,Aruba,Bahamas,Barbados,Belize,Bermuda,Bonaire,BritishVirginIslands,CaymanIslands,Dominica,FalklandIslands (Malvinas), French Guiana, Grenada, Guadeloupe, Guyana, Ma

1330、rtinique, Montserrat, Saba, SaintEustatius,SaintKittsandNevis,SaintLucia,SaintPierreandMiquelon,SaintVincentandGrenadines,SaintMaarten,TurksandCaicosIslands.5ThestatisticaldataforIsraelaresuppliedbyandundertheresponsibilityoftherelevantIsraeliauthorities.TheuseofsuchdatabytheOECDand/ortheIEAiswithou

1331、tprejudicetothestatusoftheGolanHeights,EastJerusalemandIsraelisettlementsintheWestBankunderthetermsofinternationallaw.6Individualdataarenotavailableandareestimatedinaggregatefor:BurkinaFaso,Burundi,CaboVerde,CentralAfricanRepublic,Chad,Comoros,Djibouti,KingdomofEswatini,Gambia,Guinea,GuineaBissau,Le

1332、sotho,Liberia,Madagascar,Malawi,Mali,Mauritania,Runion,Rwanda,SaoTomeandPrincipe,Seychelles,SierraLeone,SomaliaandUganda.Annex C | Definitions 215 CAbbreviationsandAcronymsAFOLUagricultureforestryandotherlanduseAPCAnnouncedPledgesCaseASEANAssociationofSoutheastAsianNationsBECCSbioenergyequippedwithC

1333、CUSBEVbatteryelectricvehiclesCCUScarboncapture,utilisationandstorageCDRcarbondioxideremovalCFLcompactfluorescentlampCH4methaneCHPcombinedheatandpower;thetermcogenerationissometimesusedCNGcompressednaturalgasCOcarbonmonoxideCO2carbondioxideCO2eqcarbondioxideequivalentCOPConferenceofParties(UNFCCC)CSP

1334、concentratingsolarpowerDACdirectaircaptureDACCSdirectaircapturewithcarboncaptureandstorageDERdistributedenergyresourcesDSIdemandsideintegrationDSOdistributionsystemoperatorDSRdemandsideresponseEAFelectricarcfurnacesEHOBextraheavyoilandbitumenETPEnergyTechnologyPerspectivesEUEuropeanUnionEVelectricve

1335、hicleFCEVfuelcellelectricvehicleGDPgrossdomesticproductGHGgreenhousegasesGTLgastoliquidsHEFAhydrogenatedestersandfattyacidsICEinternalcombustionengineIEAInternationalEnergyAgencyIIASAInternationalInstituteforAppliedSystemsAnalysisIMFInternationalMonetaryFundIOCinternationaloilcompanyIPCCIntergovernm

1336、entalPanelonClimateChangeLCCLDVsLowCCUSCaselightdutyvehiclesLCVlightcommercialvehicleLEDlightemittingdiodeIEA. All rights reserved.216 International Energy Agency | Special Report LNGliquefiednaturalgasLPGliquefiedpetroleumgasMEPSminimumenergyperformancestandardsNDCsNationallyDeterminedContributions

1337、NEANuclearEnergyAgency(anagencywithintheOECD)NGLsnaturalgasliquidsNGVnaturalgasvehicleNOCnationaloilcompanyNOXnitrogenoxidesN2OnitrousdioxideNZENetZeroEmissionsScenarioOECDOrganisationforEconomicCooperationandDevelopmentOPECOrganizationofthePetroleumExportingCountriesPHEVpluginhybridelectricvehicles

1338、PLDVpassengerlightdutyvehiclePMparticulatematterPM2.5fineparticulatematterPPPpurchasingpowerparityPVphotovoltaicsR&DresearchanddevelopmentRD&Dresearch,developmentanddemonstrationSAFsustainableaviationfuelSDGSustainableDevelopmentGoals(UnitedNations)SO2sulphurdioxideSR1.5IPCCSpecialReportontheimpacts

1339、ofglobalwarmingof1.5CabovepreindustriallevelsSTEPSStatedPoliciesScenarioT&DtransmissionanddistributionTEStotalenergysupplyTFCtotalfinalconsumptionTFECtotalfinalenergyconsumptionTPEDtotalprimaryenergydemandUECunitenergyconsumptionUNUnitedNationsUNDPUnitedNationsDevelopmentProgrammeUNEPUnitedNationsEn

1340、vironmentProgrammeUNFCCCUnitedNationsFrameworkConventiononClimateChangeUKUnitedKingdomUSUnitedStatesVREvariablerenewableenergyWEOWorldEnergyOutlookWHOWorldHealthOrganizationZEVZeroemissionsvehicleAnnex D | References 217 AnnexDReferences Chapter1:Announcednetzeropledgesandtheenergysectorclimatewatch

1341、data(2021),https:/www.climatewatchdata.org/ndcoverview.European Commission (2018), 2018 Vision for a longterm EU strategy for reducinggreenhousegasemissions,https:/ec.europa.eu/clima/policies/strategies/2050_en.IEA(InternationalEnergyAgency)(2021),GlobalEnergyReview2021,https:/www.iea.org/reports/gl

1342、obalenergyreview2021.(2020a), Sustainable Recovery, https:/www.iea.org/reports/sustainablerecovery/asustainablerecoveryplanfortheenergysector.(2020b),WorldEnergyOutlook2020,https:/www.iea.org/reports/worldenergyoutlook2020.(2020c), Energy Technology Perspectives 2020, https:/www.iea.org/reports/ener

1343、gytechnologyperspectives2020.(2020c),WorldEnergyBalances2020edition:databasedocumentation,http:/wds.iea.org/wds/pdf/WORLDBAL_Documentation.pdf.(2020e),SpecialReportonCleanEnergyInnovation,https:/www.iea.org/reports/cleanenergyinnovation.IPCC(IntergovernmentalPanelonClimateChange)(2018),GlobalWarming

1344、of1.5C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5Cabovepreindustriallevels,IPCC,https:/www.ipcc.ch/sr15/.WRIandWBCSD(WorldResourcesInstituteandWorldBusinessCouncilforSustainableDevelopment)(2004),TheGreenhouseGasProtocol:ACorporateAccountingandReportingStandard, WRI and WBCSD, Washington, D

1345、C, https:/ghgprotocol.org/sites/default/files/standards/ghgprotocolrevised.pdf.Chapter2:AglobalpathwaytonetzeroCOemissionsin2050Amann,M.etal.(2011),CosteffectivecontrolofairqualityandgreenhousegasesinEurope:Modellingandpolicyapplications,EnvironmentalModelling,Vol26,pp.14891501.Andersonetal.(2013),G

1346、ettingtoknowGIMF:TheSimulationPropertiesoftheGlobalIntegrated Monetary and Fiscal Model, International Monetary Fund, Washington, DC,https:/www.imf.org/external/pubs/ft/wp/2013/wp1355.pdf.AssembleeNationale(2021),(Proposedlawaimingtoreplacedomesticflightsbytrain),PROPOSITIONDELOIvisantreplacerlesvol

1347、sintrieursparletrain,https:/www.assembleenationale.fr/dyn/15/textes/l15b2005_propositionloi.IEA. All rights reserved.218 International Energy Agency | Special Report Aydin,E.,D.BrounenandN.Kok(2018),Informationprovisionandenergyconsumption:Evidence from a field experiment, Energy Economics, Vol. 71,

1348、 pp. 403411.,https:/doi.org/10.1016/j.eneco.2018.03.008.Byars,M.,Y.WeiandS.Handy(2017),StateLevelStrategiesforReducingVehicleMilesofTravel,https:/bit.ly/2LvA6nn.ClimateAssemblyUnitedKingdom(2020),Thepathtonetzero,https:/www.climateassembly.uk/report/read/finalreport.pdf.ConventionCitoyennepourleClim

1349、at(2021),(ProposalsoftheCitizensClimateConvention),LesPropositionsdelaConventionCitoyennepourleClimat,https:/propositions.conventioncitoyennepourleclimat.fr/.DEFRA(UKDepartmentforEnvironment,Food&RuralAffairs)(2012),Londoncongestioncharge detailed assessment, https:/ukair.defra.gov.uk/assets/documen

1350、ts/reports/cat09/0505171128_London_Congestion_Charge_Detailed_Assessment.doc.EuropeanCommission(2021),UrbanAccessRegulationsinEurope,https:/urbanaccessregulations.eu/countriesmainmenu147.Frank,S.(2021),Landbasedclimatechangemitigationpotentialswithintheagendaforsustainable development, Environmental

1351、 Research Letters, Vol. 16/2, https:/doi.org/10.1088/17489326/abc58a.IEA (International Energy Agency) (2021), The Role of Critical Minerals in Clean EnergyTransitions,IEA,https:/www.iea.org/reports/theroleofcriticalmineralsincleanenergytransitions.(2020a),WorldEnergyBalances2020edition:databasedocu

1352、mentation,http:/wds.iea.org/wds/pdf/WORLDBAL_Documentation.pdf.(2020b), Outlook for Biogas and Biomethane: Prospects for organic growth,https:/www.iea.org/reports/outlookforbiogasandbiomethaneprospectsfororganicgrowth.(2020c), World Energy Investment, 2020, https:/www.iea.org/reports/worldenergyinve

1353、stment2020.(2020d),EnergyTechnologyPerspectives2020:SpecialReportonCleanEnergyInnovation,https:/www.iea.org/reports/cleanenergyinnovation.(2019),TheFutureofRail,https:/www.iea.org/reports/thefutureofrail.IMF(InternationalMonetaryFund)(2020a),June2020:ACrisisLikeNoOther,AnUncertainRecovery,https:/www

1354、.imf.org/media/Files/Publications/WEO/2020/Update/June/English/WEOENG202006.ashx(2020b),WorldEconomicOutlookDatabase,April2020Edition,WashingtonDC.Annex D | References 219 DIPCC(IntergovernmentalPanelonClimateChange)(2019),ClimateChangeandLand:AnIPCCSpecial Report on Climate Change, Desertification,

1355、 Land Degradation, Sustainable LandManagement, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems,https:/www.ipcc.ch/srccl/.(2018),GlobalWarmingof1.5C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5Cabovepreindustriallevelsandrelatedglobalgreenhousegasemissionpathways,inthecontex

1356、tofstrengtheningtheglobalresponsetothethreatofclimatechange,sustainabledevelopmentandeffortstoeradicatepoverty,https:/www.ipcc.ch/sr15/.(2014),ClimateChange2014:SynthesisReport,ContributionofWorkingGroupsI,IIandIIIto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,https:

1357、/www.ipcc.ch/report/ar5/syr/.Jochemetal.(2020),Doesfreefloatingcarsharingreduceprivatevehicleownership?ThecaseofSHARENOWinEuropeancities,TransportationResearchPartA:PolicyandPractice,Vol.141,pp.373295,https:/doi.org/10.1016/j.tra.2020.09.016.Laxton, D. et al. (2010), The Global Integrated Monetary a

1358、nd Fiscal Model (GIMF) TheoreticalStructure,InternationalMonetaryFund,Washington,DC,https:/www.imf.org/media/Websites/IMF/importedfulltextpdf/external/pubs/ft/wp/2010/_wp1034.ashx.Martin,ShaheenandLidiker(2010),Carsharingsimpactonhouseholdvehicleholdings:ResultsforaNorthAmericansharedusevehiclesurve

1359、y,Presentedat89thAnnualMeetingoftheTransportationResearchBoard,WashingtonDC,https:/doi.org/10.3141/214319.NewgateResearchandCambridgeZero(2021),NetZeroPublicDialogue,https:/assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/969401/netzeropublicdialogue.pdf.Oxford

1360、 Economics (2020), Oxford Economics Global Economic Model, (database),https:/ All rights reserved.220 International Energy Agency | Special Report Chapter3:Sectoralpathwaystonetzeroemissionsby2050IEA(InternationalEnergyAgency)(2021a),TheRoleofCriticalMineralsinCleanEnergyTransitions,https:/www.iea.o

1361、rg/reports/theroleofcriticalmineralsincleanenergytransitions.(2021b),GlobalEVOutlook2020,https:/www.iea.org/reports/globalevoutlook2021.(2020a), The Oil and Gas Industry in Energy Transitions, https:/www.iea.org/reports/theoilandgasindustryinenergytransitions.(2020b),EnergyTechnologyPerspectives2020

1362、,IEA,https:/www.iea.org/reports/energytechnologyperspectives2020.(2019),NuclearPowerinaCleanEnergySystem,https:/www.iea.org/reports/nuclearpowerinacleanenergysystem.UNCTAD (United Nations Conference on Trade and Development) (2018), ReviewofMaritimeTransport2018,UNCTAD,https:/unctad.org/en/Publicati

1363、onsLibrary/rmt2018_en.pdf.Chapter4:WiderimplicationsofachievingnetzeroemissionsCarbonEngineering(2021),https:/ Cement Research Academy (2012), ECRA CCS Project: Report on phase III,https:/ecraonline.org/fileadmin/redaktion/files/pdf/ECRA_Technical_Report_CCS_Phase_III.pdf.Feyisa,Dons&Meilby(2014),Ef

1364、ficiencyofparksinmitigatingurbanheatislandeffect:anexample from Addis Ababa, Landscape and Urban Planning, Vol. 123, pp. 8795,https:/doi.org/10.1016/j.landurbplan.2013.12.008.GLPGP(TheGlobalLPGPartnership)(2020),AssessingPotentialforBioLPGProductionandusewithintheCookingEnergySectorinAfrica,https:/m

1365、ecs.org.uk/wpcontent/uploads/2020/09/GLPGPPotentialforBioLPGProductionandUseasCleanCookingEnergyinAfrica2020.pdf.Greco,A.etal.(2019),Areviewofthestateoftheartofsolidstatecaloriccoolingprocessesat roomtemperature before 2019, International Journal of Refrigeration, pp. 6688,https:/doi.org/10.1016/j.i

1366、jrefrig.2019.06.034.Gross,R.(2018),“Howlongdoesinnovationandcommercialisationintheenergysectortake? Historical case studies of the timescale from invention to widespreadcommercialisationintheenergysupplyandendusetechnology”,EnergyPolicy,Vol.123,pp.682299,https:/doi.org/10.1016/j.enpol.2018.08.061.An

1367、nex D | References 221 DIEA(InternationalEnergyAgency)(2021a),TheRoleofCriticalMineralsinCleanEnergyTransitions,https:/www.iea.org/reports/theroleofcriticalmineralsincleanenergytransitions.(2021b),ClimateResilience,https:/www.iea.org/reports/climateresilience.(2021c), Enhancing Cyber Resilience in E

1368、lectricity Systems, https:/www.iea.org/reports/enhancingcyberresilienceinelectricitysystems.(2021d),ConditionsandrequirementsforthetechnicalfeasibilityofapowersystemwithahighshareofrenewablesinFrancetowards2050,https:/www.iea.org/reports/conditionsandrequirementsforthetechnicalfeasibilityofapowersys

1369、temwithahighshareofrenewablesinfrancetowards2050.(2020a), World Energy Investment, 2020, https:/www.iea.org/reports/worldenergyinvestment2020.(2020b),SustainableRecovery:WorldEnergyOutlookSpecialReport,https:/www.iea.org/reports/sustainablerecovery.(2020c),EnergyTechnologyPerspectives:SpecialReporto

1370、nCarbonCaptureUtilisationandStorage,https:/www.iea.org/reports/ccusincleanenergytransitions.(2020d), Outlook for Biogas and Biomethane: Prospects for organic growth,https:/www.iea.org/reports/outlookforbiogasandbiomethaneprospectsfororganicgrowth.(2020e),TheOilandGasIndustryinEnergyTransitions,https

1371、:/www.iea.org/reports/theoilandgasindustryinenergytransitions.(2020f),WorldEnergyOutlook2020,https:/www.iea.org/reports/worldenergyoutlook2020.(2020g), The Role of CCUS in LowCarbon Power Systems, https:/www.iea.org/reports/theroleofccusinlowcarbonpowersystems.(2020h), Power Systems in Transition, h

1372、ttps:/www.iea.org/reports/powersystemsintransition/electricitysecuritymattersmorethanever.(2020i),EnergyTechnologyPerspectives2020:SpecialReportonCleanEnergyInnovation,https:/www.iea.org/reports/cleanenergyinnovation.(2019a),TheFutureofHydrogen,https:/www.iea.org/reports/thefutureofhydrogen.(2019b),

1373、 Offshore Wind Outlook 2019, https:/www.iea.org/reports/offshorewindoutlook2019.(2017),EnergyAccessOutlook2017:fromPovertytoProsperity:WorldEnergyOutlookSpecialReport,https:/www.iea.org/reports/energyaccessoutlook2017IEA. All rights reserved.222 International Energy Agency | Special Report Kamaya, N

1374、. (2011), A lithium superionic conductor, Nature Materials, pp. 682686,https:/doi.org/10.1038/nmat3066.LiquidGasEurope(2021),BioLPG:ARenewablePathwayTowards2050,https:/www.liquidgaseurope.eu/news/biolpgarenewablepathwaytowards2050.Malhotra,A.andT.Schmidt(2020),AcceleratingLowCarbonInnovation,Joule,p

1375、p.22592267,https:/doi.org/10.1016/j.joule.2020.09.004.MaterialEconomics(2019),IndustrialTransformation2050:PathwaystoNetZeroEmissionsfromEUHeavyIndustry,UniversityofCambridgeforSustainabilityLeadership,Cambridge,UnitedKingdom.Mazzucato,M.(2018),MissionorientedInnovationPolicies:ChallengesandOpportun

1376、ities,Industrial and Corporate Change, Vol. 27/5, pp. 803815, https:/doi.org/10.1093/icc/dty034.NASEOandEnergyFuturesInitiative(2021),UnitedStatesEnergy&EmploymentReport,https:/www.usenergyjobs.org/.NEA (Nuclear Energy Agency) (2016), Cost Benchmarking for Nuclear Power PlantDecommissioning,https:/d

1377、oi.org/10.1787/acae0e3ben.OECD(OrganisationforEconomicCooperationandDevelopment)(2020),Environmentallyrelatedtaxrevenue,OECDStatistics,https:/stats.oecd.org/.(2015),TheEconomicConsequencesofClimateChange,https:/www.oecd.org/env/theeconomicconsequencesofclimatechange9789264235410en.htm.Tenova (2018),

1378、 HYL News, https:/ to sail propelled by fuel cells, https:/ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.s.AnnexB:TechnologycostsIEA(InternationalEnergyAgency)(2020),WorldEnergyOutlook2020,https:/www.iea.org/reports/worldenergyoutlook2020.(2019),OffshoreWindOutlook2019,IEA

1379、,Paris,https:/www.iea.org/reports/offshorewindoutlook2019.IRENA(InternationalRenewableEnergyAgency)(2020),RenewableCostingAlliance,IRENA,AbuDhabi,https:/www.irena.org/statistics,accessed15July2020.This publication reflects the views of the IEA Secretariat but does not necessarily reflect those of in

1380、dividual IEA member countries. The IEA makes no representation or warranty, express or implied, in respect of the publications contents (including its completeness or accuracy) and shall not be responsible for any use of, or reliance on, the publication. Unless otherwise indicated, all material pres

1381、ented in figures and tables is derived from IEA data and analysis.This publication and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.IEA. All rights reserved.IEA PublicationsInternational Energy Agency Website: www.iea.orgContact information: www.iea.org/about/contact Typeset in France by IEA - May 2021Cover design: IEAPhoto credits: ShutterStock

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(国际能源署(IEA):到2050年实现净零:全球能源部门的路线图(英文版)(224页).pdf)为本站 (云闲) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
会员购买
客服

专属顾问

商务合作

机构入驻、侵权投诉、商务合作

服务号

三个皮匠报告官方公众号

回到顶部